Skip to main content
Log in

Modified Chapman-Enskog method in the terms of intensive parameters

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A kinetic description of gas mixtures with internal degrees of freedom and chemical reactions is presented. The kinetic equations are solved using a modified Chapman-Enskog method with the transition from the governing extensive parameters to adjoint intensive ones. The advantages of this transition are discussed. It is shown that, due to this transition, a number of theorems of classical aerodynamics can be extended to nonbarotropic gas flows with physicochemical processes and the dependence of the sound velocity on intensive parameters can be found in the zero approximation of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Gases (Cambridge Univ. Press, Cambridge, 1952; Inostrannaya Literatura, Moscow, 1960).

    MATH  Google Scholar 

  2. C. S. Wang-Chang and G. E. Uhlenbeck, Transport Phenomena in Polyatomic Molecules (Univ. Michigan Publ., Michigan, 1951).

    Google Scholar 

  3. L. Monchick, R. S. Yun, and E. A. Mason, “Formal Kinetic Theory of Transport Phenomena in Polyatomic Gas Mixtures,” J. Chem. Phys. 39, 654–669 (1963).

    Article  Google Scholar 

  4. S. V. Vallander, I. A. Egorova, and M. A. Rydalevskaya, “Extension of the Chapman-Enskog Method to Gas Mixtures with Internal Degrees of Freedom and Chemical Reactions,” Vestn. Leningr. Univ., Ser. 1., No. 7, 155–161 (1964) [in Russian].

  5. H. C. Andersen, “Derivation of Hydrodynamic Equations from the Boltzmann Equation,” in Kinetic Processes in Gases and Plasmas (Academic Press, New York, 1969; Atomizdat, Moscow, 1972).

    Google Scholar 

  6. M. A. Rydalevskaya, “Formal Kinetic Description of Gas Mixtures with Dissociation and Recombination,” in Aerodynamics of Rarefied Gases (Leningr. Gos. Univ., Leningrad, 1978), Vol. 9, pp. 5–20 [in Russian].

    Google Scholar 

  7. S. V. Vallander, E. A. Nagnibeda, and M. A. Rydalevskaya, Some Questions of the Kinetic Theory of Chemically Reacting Gas Mixtures (Leningr. Gos. Univ., Leningrad, 1977) [in Russian].

    Google Scholar 

  8. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  9. E. A. Nagnibeda, “Modification of the Chapman-Enskog Method for Reacting Gas Mixtures with Allowance for Fast and Slow Processes,” Vestn. Leningr. Univ., Ser. 1., No. 7, 109–114 (1973).

  10. E. A. Nagnibeda and E. V. Kustova, Kinetic Theory of Transport and Relaxation in Nonequilibrium Reacting Gas Flows (S.-Peterb. Gos. Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  11. M. A. Rydalevskaya, Statistical and Kinetic Models in Physicochemical Gas dynamics (S.-Peterb. Gos. Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  12. V. A. Matsuk and V. A. Rykov, “Extension of the Chapman-Enskog Method to Reacting Gas Mixtures,” Zh. Vychisl. Mat. Mat. Fiz. 18, 167–182 (1978); “On the Chapman-Enskog Method for Multivelocity Multitemperature Mixtures of Reacting Gases,” 18, 1230–1242 (1978).

    MATH  MathSciNet  Google Scholar 

  13. M. N. Kogan, V. S. Galkin, and N. K. Makashev, “Generalized Chapman-Enskog Method: Derivation of the Nonequilibrium Gas Dynamic Equations,” Papers of International Symposium RGD 11, Cannes, 1978 (Paris, 1979), Vol. 2, pp. 693–734.

    Google Scholar 

  14. M. N. Kogan, “Kinetic Theory in Aerothermodynamics,” Prog. Aerosp. Sci. 29, 271–354 (1992).

    Article  Google Scholar 

  15. V. N. Malozemov, A. V. Omel’chenko, and M. A. Rydalevskaya, “Entropy Maximization under Linear Constraints,” Zh. Vychisl. Mat. Mat. Fiz. 38, 1509–1513 (1998) [Comput. Math. Math. Phys. 38, 1447–1451 (1998)].

    MathSciNet  Google Scholar 

  16. M. A. Rydalevskaya, “Kinetic Foundation of Nonextensive Gas Dynamics,” Proceedings of International Symposium RGD 24, Melwill (AIP Conf. Proc., New York, 2005), pp. 1073–1078.

    Google Scholar 

  17. Yu. L. Klimontovich, Statistical Theory of Open Systems (Yanus, Moscow, 1995), part 1 [in Russian].

    MATH  Google Scholar 

  18. M. A. Rydalevskaya, “Adiabatic Relations in Gas Flows with Physicochemical Processes,” in Aerodynamics (I.V. Balabanov, Moscow, 2008), pp. 61–69 [in Russian].

    Google Scholar 

  19. S. V. Vallander, Lectures in Hydroaeromechanics (S.-Peterb. Gos. Univ., St. Petersburg, 2005) [in Russian].

    Google Scholar 

  20. L. I. Sedov, A Course in Continuum Mechanics (Nauka, Moscow, 1970; Wolters-Noordhoff, Groningen, 1971), Vol. 2.

    Google Scholar 

  21. Yu. N. Voroshilova and M. A. Rydalevskaya, “Effect of Vibrational Excitation of Molecules on the Velocity of Sound in High-Temperature Diatomic Gas,” Prikl. Mekh. Tekh. Fiz. 49(3), 28–34 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rydalevskaya.

Additional information

Original Russian Text © M.A. Rydalevskaya, 2010, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2010, Vol. 50, No. 7, pp. 1303–1314.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rydalevskaya, M.A. Modified Chapman-Enskog method in the terms of intensive parameters. Comput. Math. and Math. Phys. 50, 1238–1248 (2010). https://doi.org/10.1134/S0965542510070122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542510070122

Key words

Navigation