Skip to main content
Log in

On the smoothness of solutions of an abstract coupled thermoelasticity problem

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The Cauchy problem for a system of two operator-differential equations in Hilbert space that is a generalization of a number of linear coupled thermoelasticity problems is investigated. Results concerning the high smoothness of the solutions to these equations are proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Botsenyuk and A. A. Pankov, “Some Coupled Systems of Abstract Differential Thermoelasticity Equations,” Dokl. Akad. Nauk Ukr. SSR, Ser. A, No. 10, 6–8 (1982).

  2. S. E. Zhelezovskii, V. F. Kirichenko, and V. A. Krys’ko, “On the Existence and Uniqueness of Solutions to a Nonclassical System of Differential Equations,” Available from VINITI, 1983, Saratov, 28.11.83, no. 6302-83.

  3. A. N. Botsenyuk and A. A. Pankov, “Regularity of Solutions to Coupled Systems of Abstract Differential Thermoelasticity Equations and Their Duals,” in XVII Voronezh Winter School of Mathematics, Voronezh, 1984, Part 1, pp. 37–39, Available from VINITI, 1984, 03.07.84, no. 4585-84.

  4. A. N. Botsenyuk, “Regularity of Solutions to Coupled Systems of Abstract Differential Thermoelasticity Equations,” in Proc. of the X Conf. of Young Researchers of the Institute of Problems of Mathematics and Mechanics, Academy of Sciences of the Ukraine SSR, Lvov, 1984, Part 2, pp. 35–39, Available from VINITI, 1984, 10.11.84, no. 7197-84.

  5. S. E. Zhelezovskii, V. F. Kirichenko, and V. A. Krys’ko, “On the Existence and Uniqueness of the Solution and on the Convergence Rate of the Bubnov-Galerkin Method for a Nonclassical System of Differential Equation,” Available from VINITI, 1985, Saratov, 26.11.85, no. 8162-B85.

  6. L. M. Gershtein, “On a Coupled System of Differential Equations in Banach Space,” Ukr. Matem. Zh. 41, 898–905 (1989).

    MathSciNet  Google Scholar 

  7. L. M. Gershtein, Yu. T. Sil’chenko, and P. E. Sobolevskii, “On Semigroup Approaches to the Analysis of Thermoelasticity Problems,” in Methods for the Investigation of Differential and Integral Operators (Naukova Dumka, Kiev, 1989), pp. 46–54 [in Russian].

    Google Scholar 

  8. L. M. Gershtein, “On a Coupled System of Abstract Differential Equations in Banach Space,” Dokl. Akad. Nauk Az. SSR 45(11–12), 8–11 (1989).

    MATH  MathSciNet  Google Scholar 

  9. V. Novatskii, Elasticity Theory (Mir, Moscow, 1975) [in Russian].

    Google Scholar 

  10. C. M. Dafermos, “On the Existence and the Asymptotic Stability of Solutions to the Equations of Linear Thermoelasticity,” Arch. Ration. Mech. Anal. 29, 241–271 (1968).

    Article  MATH  MathSciNet  Google Scholar 

  11. T. Kowalski, K. Litewska, and A. Piskorek, “Uniqueness and Regularity of the Solution of the First Initial-Boundary Value Problem in Linear Thermoelasticity,” Bull. Pol. Acad. Sci. Techn. Sci. 30, 171–175 (1982).

    MATH  MathSciNet  Google Scholar 

  12. J. Gawinecki, “Existence, Uniqueness and Regularity of the Solution of the First Boundary-Initial Value Problem for the Equations of Linear Thermo-Microelasticity,” Bull. Pol. Acad. Sci. Techn. Sci. 34, 447–460 (1986).

    MATH  MathSciNet  Google Scholar 

  13. A. Chrzeszczyk, “Some Existence Results in Dynamical Thermoelasticity,” Arch. Mech. 39, 605–632 (1987).

    MATH  MathSciNet  Google Scholar 

  14. V. Thom’ee, Galerkin Finite Element Methods for Parabolic Problems, Lect. Notes Math. 1054 (Springer, Berlin, 1984).

    Google Scholar 

  15. T. Dupont, “L 2-estimates for Galerkin Method for Second Order Hyperbolic Equations,” SIAM J. Numer. Anal. 10, 880–889 (1973).

    Article  MATH  MathSciNet  Google Scholar 

  16. G. A. Baker, “Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations,” SIAM J. Numer. Anal. 13, 564–576 (1976).

    Article  MATH  MathSciNet  Google Scholar 

  17. J. E. Dendy, “Jr. Galerkin’s Method for Some Highly Nonlinear Problems,” SIAM J. Numer. Anal 14(2), 327–347 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  18. G. A. Baker, V. A. Dougalis, and O. Karakashian, “On Multistep-Galerkin Discretization of Semilinear Hyperbolic and Parabolic Equations,” Nonlinear Anal. Theory, Meth. Appl. 4, 579–597 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. A. Samarskii, Theory of Finite Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001).

    Google Scholar 

  20. S. E. Zhelezovskii, “On the Convergence of the Galerkin Method for Coupled Thermoelasticity Problems,” Zh. Vychisl. Mat. Mat. Fiz. 46, 1462–1474 (2006) [Comput. Math. Math. Phys. 46, 1387–1398 (2006)].

    MathSciNet  Google Scholar 

  21. J-L. Lions and E. Magenes, Problémes aux limites non homogénes et applications (Dunod, Paris, 1968; Mir, Moscow, 1971).

    MATH  Google Scholar 

  22. J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, (Dunod, Paris, 1969; Mir, Moscow, 1972).

    MATH  Google Scholar 

  23. O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural’tseva, Linear and Quasilinear Equations of Parabolic Type (Nauka, Moscow, 1967; American Mathematical Society, Providence, 1968).

    MATH  Google Scholar 

  24. O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics (Nauka, Moscow, 1973; Springer, New York, 1985).

    Google Scholar 

  25. V. P. Mikhailov, Partial Differential Equations (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  26. A. S. Vol’mir, Nonlinear Dynamics of Plates and Shells (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  27. Ya. S. Podstrigach, “Temperature Field in Thin Shells,” Dokl. Akad. Nauk Ukr. SSR, No. 5, 505–507 (1958).

  28. A. V. Lykov, Heat Conduction Theory (Vysshaya Shkola, Moscow, 1967) [in Russian].

    Google Scholar 

  29. O. V. Guseva, “On Boundary Value Problems for Strongly Elliptic Systems,” Dokl. Akad. Nauk SSSR 102, 1069–1072 (1955).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Zhelezovskii.

Additional information

Original Russian Text © S.E. Zhelezovskii, 2010, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2010, Vol. 50, No. 7, pp. 1240–1257.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhelezovskii, S.E. On the smoothness of solutions of an abstract coupled thermoelasticity problem. Comput. Math. and Math. Phys. 50, 1178–1194 (2010). https://doi.org/10.1134/S0965542510070079

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542510070079

Key words

Navigation