Skip to main content
Log in

Macroscopic parameters of three-dimensional flows in free shear turbulence

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The initial stage of the onset of turbulence in a three-dimensional compressible inviscid shear flow is studied. An initial deterministic velocity perturbation in the form of one or several Fourier modes leads to the development of a cascade of instabilities, which is numerically simulated. The influence exerted on the formation of the cascade of instabilities and the transition to turbulence by the size of the computational domain, the shear layer width, and the initial conditions is analyzed. It is shown that the mechanism of turbulence onset is essentially three-dimensional. The influence of various flow parameters and initial conditions on the formation of the turbulence cascade is studied numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Belotserkovskii, Karman’s Lecture (Von Karman Institute for Fluid Dynamics, 1978).

  2. O. M. Belotserkovskii, Turbulence and Instabilities (MZpress, Moscow, 2003).

    Google Scholar 

  3. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  4. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, “Physical Processes Underlying the Development of Shear Turbulence,” Zh. Eksp. Teor. Fiz. 126, 577–584 (2004) [J. Exp. Theor. Phys. 99, 504-509 (2004)].

    Google Scholar 

  5. W. Thomson, “On the Propagation of Laminar Motion through a Turbulently Moving Inviscid Liquid,” Philos. Mag. 4 (47), 342 (1887).

    Google Scholar 

  6. Lord F. R. S. Rayleigh, “On the Stability, or Instability, of Certain Fluid Motions,” Proc. London Soc. S1-11, 57–72 (1880).

    Article  Google Scholar 

  7. L. F. Richardson, “Atmospheric Diffusion Shown on a Distance-Neighbor Graph,” Proc. R. Soc. London 110, 709–737 (1926).

    Article  Google Scholar 

  8. A. N. Kolmogorov, “Local Structure of Turbulence in Incompressible Viscous Fluid at Very High Reynolds Numbers,” Dokl. Akad. Nauk SSSR 30, 476–481 (1940).

    Google Scholar 

  9. O. V. Troshkin, Nontraditional Methods in Mathematical Hydrodynamics (Am. Math. Soc. Providence, RI, 1995).

  10. O. M. Belotserkovskii and A. M. Oparin, Numerical Experiment: From Order to Chaos (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  11. O. M. Belotserkovskii, V. M. Chechetkin, S. V. Fortova, and A. M. Oparin, “The Turbulence of Free Shear Flows,” Proceedings of International Workshop on Hot Points in Astrophysics and Cosmology (Dubna, 2005), pp. 191–209.

  12. O. Belotserkovskii, S. Fortova, A. Oparin, et al., “The Turbulence in Free Shear Flows and in Accretion Disks,” Investigations of Hydrodynamic Instability and Turbulence in Fundamental and Technological Problems by Means of Mathematical Modeling with Supercomputers (Nagoya Univ., Nagoya, Japan, 2005), pp. 229–241.

    Google Scholar 

  13. E. E. Meshkov, “Instability of a Gas Interface Accelerated by a Shock Wave,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza 5, 151–158 (1969).

    Google Scholar 

  14. L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1978; Begell House, New York, 1996).

    Google Scholar 

  15. S. Yanase and Y. Kaga, “Zero-Absolute-Vorticity-State of Rotating Flows Between Plates,” Japan-Russia Seminar on Turbulence and Instabilities, September 29-30, 2003 (Tokyo, 2003).

  16. J. Hoffman and C. Johnson, “On Transition To Turbulence in Shear Flow,” Preprint (R. Inst. Technol. Kunliga Tekniska Hogskolan, 2002).

  17. S. V. Fortova, “The Cascade Mechanism in Free Shear Flows,” 24th International Conference on Interaction of Intense Energy Fluxes with Matter Poster Session, (Elbrus, Russia, 2009).

    Google Scholar 

  18. S. V. Fortova, “On Vortex Cascades in Shear Flow Instabilities,” 2nd International Conference and Advanced School on Turbulent Mixing and Beyond (Trieste, Italy, 2009).

    Google Scholar 

  19. O. M. Belotserkovskii, A. M. Oparin, O. V. Troshkin, and V. M. Chechetkin, “Constructive Modeling of Structural Turbulence: Computational Experiment,” Phys. Scripta 132 (2008)

  20. A. M. Oparin, “Numerical Simulation of Problems Related to Intense Development of Hydrodynamic Instabilities,” in Advances in Numerical Simulation: Algorithms, Numerical Experiments, and Results (Nauka, Moscow, 2000), pp. 63–90 [in Russian].

    Google Scholar 

  21. A. M. Oparin, “Numerical Study of Hydrodynamic Instabilities,” Comput. Fluid Dyn. J. 10 (3), Special Issue, 327–332 (2001).

    Google Scholar 

  22. O. M. Belotserkovskii, L. M. Kraginskii, and A. M. Oparin, “Numerical Simulation of Three-Dimensional Flows in a Stratified Atmosphere Caused by Strong Large-Scale Disturbances,” Zh. Vychisl. Mat. Mat. Fiz. 43, 1722–1736 (2003) [Comput. Math. Math. Phys. 43, 1657-1670 (2003)].

    MATH  MathSciNet  Google Scholar 

  23. A. Sakurai and K. Takayama, “Molecular Kinetic Approach to the Problem of Compressible Turbulence,” Phys. Fluids 15, 1282–1294 (2003).

    Article  Google Scholar 

  24. O. M. Belotserkovskii, V. A. Gushchin, and V. N. Kon’shin, “Splitting Method for Analysis of Stratified Fluid Flows with Free Surface,” Zh. Vychisl. Mat. Mat. Fiz. 27, 594–609 (1987).

    MathSciNet  Google Scholar 

  25. G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge Univ. Press, Cambridge, 1953; Inostrannaya Literatura, Moscow, 1955).

    MATH  Google Scholar 

  26. V. M. Kovenya and N. N. Yanenko, Splitting Method in Gas Dynamics Computations (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  27. R. Courant, E. Isaacon, and M. Rees, “On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences,” Commun. Pure Appl. Math. 5, 124–130 (1952).

    Article  Google Scholar 

  28. P. L. Roe, “Characteristic-Based Schemes for the Euler Equations,” Ann. Rev. Fluid Mech. 18, 248–254 (1986).

    Article  Google Scholar 

  29. A. Harten, “High Resolution Schemes for Hyperbolic Conservation Laws,” J. Comput. Phys. 49, 151 (1983).

    Google Scholar 

  30. A. S. Monin, Topics in Turbulence (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Fortova.

Additional information

Original Russian Text © O.M. Belotserkovskii, S.V. Fortova, 2010, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2010, Vol. 50, No. 6, pp. 1126–1139.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belotserkovskii, O.M., Fortova, S.V. Macroscopic parameters of three-dimensional flows in free shear turbulence. Comput. Math. and Math. Phys. 50, 1071–1084 (2010). https://doi.org/10.1134/S0965542510060126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542510060126

Navigation