Skip to main content
Log in

Eigenvalue analysis for a crack in a power-law material

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A nonlinear eigenvalue problem related to determining the stress and strain fields near the tip of a transverse crack in a power-law material is studied. The eigenvalues are found by a perturbation method based on representations of an eigenvalue, the corresponding eigenfunction, and the material nonlinearity parameter in the form of series expansions in powers of a small parameter equal to the difference between the eigenvalues in the linear and nonlinear problems. The resulting eigenvalues are compared with the accurate numerical solution of the nonlinear eigenvalue problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. Hutchinson, “Singular Behavior at the End of Tensile Crack in a Hardening Material,” J. Mech. Phys. Solids 16, 13–31 (1968).

    Article  MATH  Google Scholar 

  2. J. W. Hutchinson, “Plastic Stress and Strain Fields at a Crack Tip,” J. Mech. Phys. Solids 16, 337–349 (1968).

    Article  Google Scholar 

  3. J. R. Rice and G. F. Rosengren, “Plane Strain Deformation near a Crack Tip in a Power-Law Hardening Material,” J. Mech. Phys. Solids 16, 1–12 (1968).

    Article  MATH  Google Scholar 

  4. F. G. Yuan and S. Yang, “Analytical Solutions of Fully Plastic Crack-Tip Higher Order Fields under Antiplane Shear,” Int. J. Fracture 69, 1–26 (1994).

    Article  Google Scholar 

  5. G. P. Nikishkov, “An Algorithm and a Computer Program for the Three-Term Asymptotic Expansion of Elastic-Plastic Crack Tip Stress and Displacement Fields,” Eng. Fracture Mech. 50(1), 65–83 (1995).

    Article  Google Scholar 

  6. B. N. Nguyen, P. R. Onck, and E. Van Der Giessen, “On Higher-Order Crack-Tip Fields in Creeping Solids,” Trans. ASME J. Appl. Mech. 67, 372–382 (2000).

    Article  MATH  Google Scholar 

  7. I. Jeon and S. Im, “The Role of Higher Order Eigenfields in Elastic-Plastic Cracks,” J. Mech. Phys. Solids 49, 2789–2818 (2001).

    Article  MATH  Google Scholar 

  8. C. Y. Hui and A. Ruina, “Why K? High Order Singularities and Small Scale Yielding,” Int. Fracture 72, 97–120 (1995).

    Google Scholar 

  9. M. L. Williams, “On the Stress Distribution at the Base of a Stationary Crack,” Trans ASME J. Appl. Phys., 109–114 (1957).

  10. M. L. Williams, “Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Tension,” J. Appl. Mech. 19, 526–528 (1952).

    Google Scholar 

  11. L. Meng and S. B. Lee, “Eigenspectra and Orders of Singularity at a Crack Tip for a Power-Law Creeping Medium,” Int. J. Fracture 92, 55–70 (1998).

    Article  Google Scholar 

  12. D. H. Chen and K. Ushijima, “Plastic Stress Singularity near the Tip of a V-Notch,” Int. J. Fracture 106, 117–134 (2000).

    Article  Google Scholar 

  13. H. Neuber, “Theory of Stress Concentration for Shear-Strained Prismatical Bodies with Arbitrary Nonlinear Stress-Strain Law,” J. Appl. Mech. 28, 544–550 (1961).

    MATH  MathSciNet  Google Scholar 

  14. M. Anheuser and D. Gross, “Higher Order Fields at Crack and Notch Tips in Power-Law Materials Under Longitudinal Shear,” Arch. Appl. Mech. 64, 509–518 (1994).

    Article  MATH  Google Scholar 

  15. A. Nayfeh, Introduction to Perturbation Techniques (Wiley, New York, 1981; Mir, Moscow, 1984).

    MATH  Google Scholar 

  16. L. V. Stepanova, “Eigenvalues of the Antiplane-Shear Crack Problem for a Power-Law Material,” Prikl. Mekh. Tekh. Fiz., No. 1, 173–180 (2008) [J. Appl. Mech. Tech. Phys. 49, 142–147 (2008)].

  17. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice Hall, Englewood Cliffs, N.J., 1977; Mir, Moscow, 1980).

    MATH  Google Scholar 

  18. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  19. L. V. Stepanova, Mathematical Methods in Fracture Mechanics (Samar. Gos. Univ., Samara, 2006) [in Russian].

    Google Scholar 

  20. G. A. Baker, Jr. and P. Graves-Morris, Padér Approximants (Addison-Wesley, Reading, Mass., 1981; Mir, Moscow, 1986).

    Google Scholar 

  21. I. V. Andrianov, R. G. Barantsev, and L. I. Manevich, Asymptotic Mathematics and Synergetics (Editorial URSS, Moscow, 2004) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Stepanova.

Additional information

Original Russian Text © L.V. Stepanova, 2009, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2009, Vol. 49, No. 8, pp. 1399–1415.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stepanova, L.V. Eigenvalue analysis for a crack in a power-law material. Comput. Math. and Math. Phys. 49, 1332–1347 (2009). https://doi.org/10.1134/S0965542509080053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542509080053

Key words

Navigation