Skip to main content
Log in

High-order accurate difference schemes for solving gasdynamic equations by the Godunov method with antidiffusion

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A technique is proposed for improving the accuracy of the Godunov method as applied to gasdynamic simulations in one dimension. The underlying idea is the reconstruction of fluxes arsoss cell boundaries (“large” values) by using antidiffusion corrections, which are obtained by analyzing the differential approximation of the schemes. In contrast to other approaches, the reconstructed values are not the initial data but rather large values calculated by solving the Riemann problem. The approach is efficient and yields higher accuracy difference schemes with a high resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Godunov, “Finite-Difference Method for Calculating Discontinuous Solutions to Fluid Dynamics Equations,” Mat. Sb. 47(89), 271–306 (1959).

    MathSciNet  Google Scholar 

  2. S. K. Godunov, A. V. Zabrodin, and G. P. Prokopov, “Finite-Difference Scheme for Two-Dimensional Unsteady Gas Dynamics and the Computation of a Detached Shock Wave,” Zh. Vychisl. Mat. Mat. Fiz. 1, 1020–1050 (1961).

    MathSciNet  Google Scholar 

  3. G. B. Alalykin, S. K. Godunov, I. L. Kireeva, et al., Solution of One-Dimensional Problems in Gas Dynamics on Moving Grids (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  4. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, et al., Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  5. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman & Hall/CRC, London, 2001).

    MATH  Google Scholar 

  6. G. P. Prokopov, “Computation of a Discontinuity for Porous Media and Continuum Media with a Two-Term Equation of State,” VANT, Ser. Metod. Program. Chisl. Reshen. Zadach Mat. Fiz. 2(10), 32–40 (1982).

    Google Scholar 

  7. N. Ya. Moiseev and T. A. Mukhamadieva, “Newton’s Method as Applied to the Riemann Problem for Media with General Equations of State,” Zh. Vychisl. Mat. Mat. Fiz. 48, 1102–1110 (2008) [Comput. Math. Math. Phys. 48, 1039–1047 (2008)].

    MATH  Google Scholar 

  8. B. S. Masson, T. D. Taylor, and R. M. Foster, “Application of Godunov’s Method to Blunt-Body Calculations,” AIAA J. 7, 694–698 (1969).

    Article  MATH  Google Scholar 

  9. B. L. Rozhdestvenskii and N. N. Yanenko, Systems of Quasilinear Equations and Their Applications to Gas Dynamics (Nauka, Moscow, 1978; Am. Math. Soc., Providence, 1983).

    Google Scholar 

  10. V. P. Kolgan, “The Minimal-Values-of-Derivatives Principle as Applied to the Design of Finite-Difference Schemes for Gas Dynamics Simulation,” Uch. Zap. Tsentr. Aerogidrodin. Inst. 3(6), 68–77 (1972).

    Google Scholar 

  11. B. J. Van Leer, “Towards the Ultimate Conservative Difference Scheme: Second-Order Sequel to Godunov’s Method,” J. Comput. Phys. 32, 101–136 (1979).

    Article  Google Scholar 

  12. P. Colella and P. R. Woodward, “The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations,” J. Comput. Phys. 54, 174–201 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  13. H. Takewaki, A. Nishiguchi, and T. Yabe, “Cubic Interpolated Pseudo-Particle Method (CIP) for Solving Hyperbolic-Type Equations,” J. Comput. Phys. 61, 261–268 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  14. V. I. Kopchenov and A. N. Kraiko, “Second-Order Accurate Monotone Finite-Difference Scheme for Hyperbolic Systems with Two Independent Variables,” Zh. Vychisl. Mat. Mat. Fiz. 23, 848–859 (1983).

    MATH  MathSciNet  Google Scholar 

  15. I. S. Men’shov, “Increase in the Order of Accuracy of Godunov’s Scheme as Based on Solving the Generalized Riemann Problem,” Zh. Vychisl. Mat. Mat. Fiz. 30, 1357–1371 (1990).

    MATH  MathSciNet  Google Scholar 

  16. R. P. Fedorenko, “High-Accuracy Finite-Difference Schemes as Applied to Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 2, 1122–1128 (1962).

    MathSciNet  Google Scholar 

  17. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer-Verlag, Berlin, 1999).

    MATH  Google Scholar 

  18. Yu. A. Bondarenko, “Order of Accuracy, Convergence Order, and Efficiency of Multidimensional Euler Computations in Gas Dynamics as Applied to Convergence Computation of the “Blast Waves” Problem,” VANT, Ser. Mat. Model. Fiz. Protsessov 4, 51–61 (2004).

    Google Scholar 

  19. N. Ya. Moiseev, “A Modification of Godunov’s Scheme,” VANT, Ser. Metod. Program. Chisl. Reshen. Zadach Mat. Fiz. 3, 35–43 (1986).

    Google Scholar 

  20. N. Ya. Moiseev and I. Yu. Silant’eva, Preprint No. 230, RFYaTs-VNIITF (All-Russia Res. Inst. of Technical Physics, Russian Federal Nuclear Center, Snezhinsk, 2008).

  21. N. Ya. Moiseev and I. Yu. Silant’eva, “Arbitrary-Order Difference Schemes for Solving Linear Advection Equations with Constant Coefficients by the Godunov Method with Antidiffusion,” Zh. Vychisl. Mat. Fiz. 48, 1282–1293 (2008) [Comput. Math. Math. Phys. 48, 1210–1220 (2008)].

    Google Scholar 

  22. N. I. Shokin, Method of Differential Approximation (Nauka, Novosibirsk, 1979; Berlin, Springer-Verlag, 1983).

    MATH  Google Scholar 

  23. J. D. Fromm, “A Method for Reducing Dispersion in Convective Difference Schemes,” J. Comput. Phys. 3, 176–189 (1968).

    Article  MATH  Google Scholar 

  24. V. P. D’yakonov, Maple 8 in Mathematics, Physics, and Education (SOLON-Press, Moscow, 2003) [in Russian].

    Google Scholar 

  25. S. K. Godunov and A. V. Zabrodin, “Second-Order Accurate Difference Schemes for Multidimensional Problems,” Zh. Vychisl. Mat. Mat. Fiz. 2, 706–708 (1962).

    MathSciNet  Google Scholar 

  26. B. P. Leonard and H. S. Niknafs, “Sharp Monotonic Resolution of Discontinuities without Clipping of Narrow Extrema,” Comput. Fluids 19(1), 141–154 (1991).

    Article  MATH  Google Scholar 

  27. J. P. Boris, D. L. Book, and K. Hain, “Flux-Corrected Transport: Generalization of the Method,” J. Comput. Phys. 18, 248–283 (1975).

    Article  Google Scholar 

  28. S. T. Zalesak, “Fully Multidimensional Flux-Corrected Transport Algorithms for Fluids,” J. Comput. Phys. 31, 335–345 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  29. G. A. Sod, “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservations Laws,” J. Comput. Phys. 27, 1–31 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  30. V. F. Kuropatenko, G. V. Kovalenko, V. I. Kuznetsov, et al., “Software Package VOLNA and Nonhomogeneous Finite-Difference Method for Unsteady Motions of Compressible Continuum Media,” VANT, Ser. Metod. Program. Chisl. Reshen. Zadach Mat. Fiz. 2, 19–25 (1989).

    Google Scholar 

  31. N. Ya. Moiseev, “Consistent Approximation in Godunov-Type Difference Schemes for One-Dimensional Gas Dynamic Computations,” Zh. Vychisl. Mat. Mat. Fiz. 36, 149–150 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ya. Moiseev.

Additional information

Original Russian Text © N.Ya. Moiseev, I.Yu. Silant’eva, 2009, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2009, Vol. 49, No. 5, pp. 857–873.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moiseev, N.Y., Silant’eva, I.Y. High-order accurate difference schemes for solving gasdynamic equations by the Godunov method with antidiffusion. Comput. Math. and Math. Phys. 49, 827–841 (2009). https://doi.org/10.1134/S096554250905008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554250905008X

Keywords

Navigation