Skip to main content
Log in

Computational bounds for local search in combinatorial optimization

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The results related to finding local optima in combinatorial optimization are overviewed. The class of polynomial-time local search problems (class PLS) is considered. By analogy with Cook’s theorem, the existence of most complicated problems in this class is established. The number of steps in local descent algorithms is estimated in the worst and average cases. The local search determination of exact and approximate solutions with guaranteed error bounds is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. T. Arkhipova and I. V. Sergienko, “Formalization and Solution of Certain Computing-Process-Organization Problems in Data Processing Systems,” Kibernetika, No. 5, 11–18 (1973).

  2. T. T. Arkhipova and I. V. Sergienko, “Method of Feasible Directions and the Descent-Vector Method in Integer Programming,” Kibernetika, No. 5, (1975).

  3. V. A. Volkonskii, L. V. Levina, A. B. Pomanskii, et al., “An Iterative Method for Integer Programming Problems,” Dokl. Akad. Nauk SSSR 169, 1289–1292 (1966).

    Google Scholar 

  4. M. R. Garey and D. S. Johnson, Computer and Intractability: A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979; Mir, Moscow, 1982).

    Google Scholar 

  5. V. A. Emelichev, M. M. Kovalev, and A. M. Kononenko, “Two Methods for Approximate Solution of Linear Integer Programming Problems with Boolean Variables,” in Automated Control Systems (TsNIITU, Minsk, 1971), Vol. 5 [in Russian].

    Google Scholar 

  6. Yu. I. Zhuravlev, “Local Algorithms for the Calculation of Information,” Kibernetika, No. 1, 12–19 (1965).

  7. M. M. Kovalev and V. A. Pir’yanovich, “Random Search for Locally Optimal Plans of Discrete Optimization Problems,” in Improvement of the Planning and Management of the National Economy (NIIEMP, Minsk, 1975) [in Russian].

    Google Scholar 

  8. A. A. Korbut, I. Kh. Sigal, and Yu. Yu. Finkel’shtein, “Hybrid Methods in Discrete Programming,” Izv. Akad. Nauk SSSR. Tekh. Kibern., No. 1, 65–77 (1988).

  9. Yu. A. Kochetov, “Probabilistic Local Search Methods for Discrete Optimization Problems,” in Discrete Mathematics and Applications (Mosk. Gos. Univ., Moscow, 2001), pp. 87–117 [in Russian].

    Google Scholar 

  10. Yu. A. Kochetov, M. G. Pashchenko, and A. V. Plyasunov, “On the Complexity of Local Search in the p-Median Problem,” Diskret. Anal. Issled. Operats., Ser. 2 12(2), 44–71 (2005).

    MathSciNet  Google Scholar 

  11. G. S. Lbov, “Choice of Effective System of Dependent Features,” Vychisl. Sist., No. 19, 21–34 (1965).

  12. C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization (Prentice Hall, Englewood Cliffs, 1982; Mir, Moscow, 1985).

    MATH  Google Scholar 

  13. L. A. Rastrigin, “Random Search: Specific Features, Historical Stages, and Prejudice,” Vopr. Kibern., No. 33, 3–16 (1978).

  14. I. V. Sergienko, “Application of the Descent-Vector Method to Integer Programming Problems,” Upr. Sist. Mashiny, No. 3 (1975).

  15. I. V. Sergienko and M. F. Kaspshitskaya, Models and Methods for Computer Solution of Combinatorial Optimization Problems (Naukova Dumka, Kiev, 1981) [in Russian].

    Google Scholar 

  16. I. Kh. Sigal, “Sequence of Applying Approximate Algorithms in a Combined Algorithm for Solving the Traveling Salesman Problem,” Zh. Vychisl. Mat. Mat. Fiz. 29, 1714–1721 (1989).

    MathSciNet  Google Scholar 

  17. V. A. Trubin, “Method for Solving Integer Linear Programming Problems of a Special Form,” Dokl. Akad. Nauk SSSR 189, 552–554 (1969).

    MathSciNet  Google Scholar 

  18. Yu. Yu. Finkel’shtein, Approximate Methods and Applied Discrete Programming Problems (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  19. Yu. Yu. Finkel’shtein, “One Class of Discrete Programming Problems,” Ekon. Mat. Methods 4, 652–655 (1968).

    Google Scholar 

  20. Yu. Yu. Finkel’shtein, “On the Solution of Special Discrete Programming Problems,” Ekon. Mat. Methods 1, 262–270 (1965).

    Google Scholar 

  21. L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks (Princeton Univ. Press, Princeton, 1962; Mir, Moscow, 1966).

    MATH  Google Scholar 

  22. V. P. Cherenin and V. R. Khachaturov, “Solution of One Class of Facility Location Problems by Sequential Calculations,” in Economic Mathematical Methods (Nauka, Moscow, 1965), No. 2, pp. 279–290 [in Russian].

    Google Scholar 

  23. E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven, “Simulated Annealing,” in Local Search in Combinatorial Optimization (Wiley, Chichester, 1997), pp. 91–120.

    Google Scholar 

  24. R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen, “A Survey of Very Large-Scale Neighborhood Search Techniques,” Discrete Appl. Math. 123, Issues 1–3, 75–102 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Alekseeva, Yu. Kochetov, and A. Plyasunov, “Complexity of Local Search for the p-Median Problem,” Eur. J. Operat. Res. (2007).

  26. E. Angel and V. Zissimopoulos, “On the Classification of NP-Complete Problems in Terms of Their Correlation Coefficient,” Discrete Appl. Math. 9, 261–277 (2000).

    Article  MathSciNet  Google Scholar 

  27. S. Arora, P. Raghavan, and S. Rao, “Approximation Schemes for Euclidean k-Medians and Related Problems,” Proceedings of 30th Annual ACM Symposium on Theory of Computing (1998), pp. 106–113.

  28. G. Ausiello, P. Crescenzi, G. Gambosi, et al., Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties (Springer-Verlag, Berlin, 1999).

    MATH  Google Scholar 

  29. F. Bock, “An Algorithm for Solving “Traveling-Salesman” and Related Network Optimization Problems,” Bulletin of 14th National Meeting of the Operations Research Society of America (1958), p. 897.

  30. R. E. Burkard, V. G. Deineko, and G. J. Woeginger, “The Traveling Salesman Problem and the PQ-Tree,” Proceedings of IPCOV (Lect. Notes Comput. Sci., Vol. 184) (Springer-Verlag, Berlin, 1996), pp. 490–504.

    Google Scholar 

  31. Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, Ed. by E. K. Burke and G. Kendall (Springer-Verlag, Berlin, 2005).

    MATH  Google Scholar 

  32. G. A. Croes, “A Method for Solving Traveling Salesman Problems,” Operat. Res. 6, 791–812 (1958).

    MathSciNet  Google Scholar 

  33. A. Fabrikant, C. Papadimitriou, and K. Talwar, “The Complexity of Pure Nash Equilibria,” Proceedings of 36th Annual ACM Symposium on Theory of Computing (Chicago, IL, USA, 2004), pp. 604–612.

    Google Scholar 

  34. C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for Improving Network Partitions,” Proceedings of 19th Design Automation Conference (IEEE Comput. Soc., Los Alamitos, CA, 1982), pp. 175–181.

    Google Scholar 

  35. S. T. Fischer, “A Note on the Complexity of Local Search Problems,” Inf. Process. Lett. 53, 69–75 (1995).

    Article  MATH  Google Scholar 

  36. M. L. Fridman, D. S. Johnson, L. A. McGeoch, and G. Ostheimer, “Data Structures for Traveling Salesman,” J. Algorithms 18, 432–479 (1995).

    Article  MathSciNet  Google Scholar 

  37. L. K. Grover, “Local Search and the Local Structure of NP-Complete Problems,” Operat. Res. Lett. 12, 235–244 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Guha and S. Khuller, “Greedy Strikes Back: Improved Facility Location Algorithms,” J. Algorithms 31, 228–248 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  39. G. Gutin, “Exponential Neighborhood Local Search for the Traveling Salesman Problem,” Comput. Operat. Res. 26, 313–320 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  40. G. Gutin and A. Yeo, “Small Diameter Neighborhood Graphs for the Traveling Salesman Problem: Four Moves from Tour to Tour,” Comput. Operat. Res. 26, 321–327 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  41. D. S. Johnson and L. A. McGeoch, “The Traveling Salesman Problem: A Case Study,” Local Search in Combinatorial Optimization (Wiley, Chichester, 1997), pp. 215–310.

    Google Scholar 

  42. D. S. Johnson, “Local Optimization and the Traveling Salesman Problem,” Automata, Languages, and Programming (Springer-Verlag, Berlin, 1990) (Lect. Notes Comput. Sci. Vol. 443), pp. 446–461.

    Chapter  Google Scholar 

  43. D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, “How Easy Is Local Search?” J. Comput. Syst. Sci. 37, 79–100 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  44. B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning Graphs,” Bell Syst. Tech. J. 49, 291–307 (1970).

    Google Scholar 

  45. Yu. Kochetov and D. Ivanenko, “Computationally Difficult Instances for the Uncapacitated Facility Location Problem,” Metaheuristics: Progress as Real Solvers, Ed. by T. Ibaraki, et al. (Springer-Verlag, Berlin, 2005), pp. 351–367.

    Chapter  Google Scholar 

  46. B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms (Springer-Verlag, Berlin, 2005).

    Google Scholar 

  47. M. W. Krentel, “Structure in Locally Optimal Solutions,” Proceedings of 30th Annual Symposium on Foundations of Computer Sciences, Research Triangle Park, NC, USA (1989), pp. 216–222.

  48. M. W. Krentel, “On Finding and Verifying Locally Optimal Solutions,” SIAM J. Comput. 19, 742–751 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  49. S. Lin and B. W. Kernighan, “An Efficient Heurstic Algorithm for the Traveling-Salesman Problem,” Operat. Res. 21, 498–516 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  50. T. A. J. Nicholson, “A Sequential Method for Discrete Optimization Problems and Its Application to the Assignment, Traveling Salesman, and Tree Scheduling Problems,” J. Inst. Math. Appl. 13, 362–375 (1965).

    Google Scholar 

  51. J. B. Orlin, A. P. Punnen, and A. Schulz, “Approximate Local Search in Combinatorial Optimization,” SIAM J. Comput. 33, 1201–1214 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  52. I. H. Osman and G. Laporte, “Metaheuristics: A Bibliography,” Ann. Operat. Res. 63, 513–628 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  53. C. H. Papadimitriou, “The Complexity of the Lin-Kernighan Heuristic for the Traveling Salesman Problem,” SIAM J. Comput. 21, 450–463 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  54. A. P. Punnen, “The Traveling Salesman Problem: New Polynomial Approximation Algorithms and Domination Analysis,” Res. Rep. (St. John Univ., New Brunswick, 1996).

    Google Scholar 

  55. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Ed. by C.C. Ribeiro and P. Hansen (Kluwer. Academic, Boston, 1998).

    Google Scholar 

  56. A. A. Schäffer and M. Yannakakis, “Simple Local Search Problems That Are Hard to Solve,” SIAM J. Comput. 20(1), 56–87 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  57. P. F. Stadler, “Correlation in Landscapes of Combinatorial Optimization Problems,” Europhys. Lett. 20, 479–482 (1992).

    Article  Google Scholar 

  58. P. F. Stadler and W. Schnabl, “The Landscape of the Traveling Salesman Problem,” Phys. Lett. A 161, 337–344 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  59. C. A. Tovey, “Low Order Polynomial Bounds on the Expected Performance of Local Improvement Algorithms,” Math. Program. 35, 193–224 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  60. C. A. Tovey, “Local Improvement on Discrete Structures,” Local Search in Combinatorial Optimization (Wiley, Chichester, 1997), pp. 57–90.

    Google Scholar 

  61. M. G. A. Verhoeven, P. C. J. Swinkels, and E. H. L. Aarts, Parallel Local Search and the Traveling Salesman Problem, Working Paper (Philips Res. Labs., Eindhoven, 1995).

    Google Scholar 

  62. T. Vredeveld and J. K. Lenstra, “On Local Search for the Generalized Graph Coloring Problem,” Operat. Res. Lett. 31, 28–34 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  63. P. Weiner, S. L. Savage, and A. Bagchi, “Neighborhood Search Algorithms for Guaranteeing Optimal Traveling Salesman Tours Must Be Inefficient,” J. Comput. Syst. Sci. 12, 25–35 (1976).

    MathSciNet  MATH  Google Scholar 

  64. M. Yannakakis, “Computational Complexity,” Local Search in Combinatorial Optimization (Wiley, Chichester, 1997), pp. 19–55.

    Google Scholar 

  65. G. Ausello and M. Protasi, “Local Search Reducibility and Approximability of NP-Optimization Problems,” Information Proc. Lett., 54, 73–79 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Kochetov.

Additional information

Original Russian Text © Yu.A. Kochetov, 2008, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2008, Vol. 48, No. 5, pp. 788–807.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kochetov, Y.A. Computational bounds for local search in combinatorial optimization. Comput. Math. and Math. Phys. 48, 747–763 (2008). https://doi.org/10.1134/S0965542508050059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542508050059

Keywords

Navigation