Skip to main content
Log in

The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The convergence rate at the initial stage is analyzed for a previously proposed class of asymptotically optimal adaptive methods for polyhedral approximation of convex bodies. Based on the results, the initial convergence rate of these methods can be evaluated for arbitrary bodies (including the case of polyhedral approximation of polytopes) and the resources sufficient for achieving optimal asymptotic properties can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Minkowski, “Volumen und Oberfläche,” Math. Ann. 57, 447–496 (1903).

    Article  MathSciNet  Google Scholar 

  2. P. M. Gruber, “Aspects of Approximation of Convex Bodies,” in Handbook of Convex Geometry, Ed. by P. M. Gruber and J. M. Willis (Elsevier Science, Amsterdam, 1993), Ch. 1.10, pp. 321–345.

    Google Scholar 

  3. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1969; Gordon & Breach, New York, 1986).

    Google Scholar 

  4. A. V. Lotov, V. A. Bushenkov, G. K. Kamenev, and O. L. Chernykh, Computer and Search for Balanced Tradeoff: The Feasible Goals Method (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

  5. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Feasible Goals Method Search for Smart Decisions (Vychisl. Tsentr Ross. Akad. Nauk, Moscow, 2001).

    Google Scholar 

  6. A. V. Lotov, V. A. Bushenkov, and G. K. Kamenev, Interactive Decision Maps: Approximation and Visualization of Pareto Frontier (Kluwer Academic, Boston, 2004).

    MATH  Google Scholar 

  7. G. K. Kamenev, “On a Class of Adaptive Schemes for Polyhedral Approximation of Convex Bodies,” in Mathematical Modeling and Discrete Optimization (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1988), pp. 3–9 [in Russian].

    Google Scholar 

  8. G. K. Kamenev, “On a Class of Adaptive Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 32, 136–152 (1992).

    MATH  MathSciNet  Google Scholar 

  9. G. K. Kamenev, “Conjugate Adaptive Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 42, 1351–1367 (2002) [Comput. Math. Math. Phys. 42, 1301–1316 (2002)].

    MATH  MathSciNet  Google Scholar 

  10. G. K. Kamenev, “On the Efficiency of Hausdorff Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 33, 796–805 (1993).

    MATH  MathSciNet  Google Scholar 

  11. G. K. Kamenev, “Efficient Algorithms for Approximation of Nonsmooth Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 39, 446–450 (1999) [Comput. Math. Math. Phys. 39, 423–427 (1999)].

    MathSciNet  Google Scholar 

  12. G. K. Kamenev, “On the Approximation Properties of Nonsmooth Convex Disks,” Zh. Vychisl. Mat. Mat. Fiz. 40, 1464–1474 (2000) [Comput. Math. Math. Phys. 40, 1404–1414 (2000)].

    MathSciNet  Google Scholar 

  13. R. V. Efremov and G. K. Kamenev, “A priori Estimate for Asymptotic Efficiency of One Class of Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 42, 23–32 (2002) [Comput. Math. Math. Phys. 42, 20–29 (2002)].

    MATH  MathSciNet  Google Scholar 

  14. G. K. Kamenev, “A Polyhedral Approximation Method for Convex Bodies That is Optimal with Respect to the Order of the Number of Support and Distance Function Evaluations,” Dokl. Akad. Nauk 388, 309–311 (2003) [Dokl. Math. 67, 137–140 (2003)].

    MATH  MathSciNet  Google Scholar 

  15. G. K. Kamenev, “Self-Dual Adaptive Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 43, 1127–1137 (2003) [Comput. Math. Math. Phys. 43, 1073–1086 (2003)].

    MathSciNet  Google Scholar 

  16. R. V. Efremov, “A Priori Estimate for the Efficiency of Adaptive Algorithms for Polyhedral Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 43, 149–160 (2003) [Comput. Math. Math. Phys. 43, 146–156 (2003)].

    MathSciNet  Google Scholar 

  17. G. K. Kamenev, Analysis of Iterative Methods for Polyhedral Approximation of Convex Bodies (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1986) [in Russian].

    Google Scholar 

  18. S. M. Dzholdybaeva and G. K. Kamenev, “Numerical Study of the Efficiency of a Polyhedral Approximation Algorithm for Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 32, 857–866 (1992).

    MathSciNet  Google Scholar 

  19. L. V. Bourmistrova, “Experimental Analysis of a New Adaptive Method for Polyhedral Approximation of Multidimensional Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 43, 328–346 (2003) [Comput. Math. Math. Phys. 43, 314–330 (2003)].

    Google Scholar 

  20. K. Leichtweiss, Konvexe Mengen (Springer-Verlag, Berlin, 1980; Nauka, Moscow, 1985).

    Google Scholar 

  21. G. K. Kamenev, Candidate’s Dissertation in Mathematics and Physics (MFTI, Moscow, 1986).

    Google Scholar 

  22. L. Button and J.-B. Wilker, “Cutting Exponents for Polyhedral Approximations to Convex Bodies,” Geometriac Dedicata 7, 417–430 (1978).

    MathSciNet  Google Scholar 

  23. G. K. Kamenev, “Analysis of an Algorithm for Approximation of Convex Bodies,” Zh. Vychisl. Mat. Mat. Fiz. 34, 608–616 (1994).

    MATH  MathSciNet  Google Scholar 

  24. W. Blaschke, Kreis und Kugel (Chelsea, New York, 1949; Nauka, Moscow, 1967).

    MATH  Google Scholar 

  25. D. Koutroufiotis, “On Blaschke’s Rolling Theorems,” Arch. Math. 23, 655–660 (1972).

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Schneider, “Closed Convex Hypersurfaces with Curvature Restrictions,” Proc. Am. Math. Soc. 103, 1201–1204 (1988).

    Article  MATH  Google Scholar 

  27. L. N. Brooks and J. B. Strantzen, “Blaschke’s Rolling Theorem in R n,” Mem. Am. Math. Soc. Providence 80(405), 2–5 (1989).

    MathSciNet  Google Scholar 

  28. K. Leichtweiss, “Convexity and Differential Geometry,” in Handbook of Convex Geometry (Elsevier, Amsterdam, 1993), ch. 4.1, pp. 1045–1080.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Kamenev.

Additional information

Original Russian Text © G.K. Kamenev, 2008, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2008, Vol. 48, No. 5, pp. 763–778.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamenev, G.K. The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies. Comput. Math. and Math. Phys. 48, 724–738 (2008). https://doi.org/10.1134/S0965542508050035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542508050035

Keywords

Navigation