Skip to main content
Log in

Piecewise parabolic method on a local stencil for ideal magnetohydrodynamics

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A numerical scheme based on the piecewise parabolic method on a local stencil (PPML) is proposed for solving the ideal magnetohydrodynamic (MHD) equations. The method makes use of the conservation of Riemann invariants along the characteristics of the MHD equations. As a result, a local stencil can be used to construct a numerical solution. This approach improves the dissipative properties of the numerical scheme and is convenient in the case of adaptive grids. The basic stages in the design of the scheme are illustrated in the two-dimensional case. The conservation of the solenoidal property of the magnetic field is discussed. The scheme is tested using several typical MHD problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Ustyugov and M. V. Popov, “Piecewise Parabolic Method on Local Stencil for Gasdynamic Simulations,” Zh. Vychisl. Mat. Mat. Fiz. 47(12), 2060–2081 (2007) [Comput. Math. Math. Phys. 47, 1970–1989 (2007)].

    MathSciNet  Google Scholar 

  2. P. Collela and P. Woodward, “The Piecewise Parabolic Method for Gas-Dynamical Simulations,” J. Comput. Phys. 54, 174–201 (1984).

    Article  Google Scholar 

  3. M. Brio and C. C. Wu, “An Upwind Differencing Scheme for the Equations of Ideal Magnetohydrodynamics,” J. Comput. Phys. 75, 400–422 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  4. K. G. Powell, P. L. Roe, T. J. Linde, et al., “A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics,” J. Comput. Phys. 154, 284–309 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. L. Roe, “Characteristic-Based Schemes for the Euler Equations,” Ann. Rev. Fluid Mech. 18, 337–365 (1986).

    Article  MathSciNet  Google Scholar 

  6. G. Töth, “The ∇ · B = 0 Constraint in Shock-Capturing Magnetohydrodynamics Codes,” J. Comput. Phys. 161, 605–652 (2000).

    Article  MathSciNet  Google Scholar 

  7. T. I. Gombosi, K. G. Powell, and D. L. De Zeeuw, “Axisymmetric Modeling of Cometary Mass Loading on an Adaptively Refined Grid: MHD Results,” J. Geophys. Res. 99, 21 525–21 539 (1994).

    Google Scholar 

  8. J. U. Brackbill and D. C. Barnes, “The Effect of Nonzero B on the Numerical Solution of the Magnetohydrodynamic Equations,” J. Comput. Phys. 35, 426–430 (1980).

    Article  MATH  MathSciNet  Google Scholar 

  9. C. R. Evans and J. F. Hawley, “Simulation of Magnetohydrodynamic Fluxes: A Constrained Advection Method,” Astrophys. J. 332, 659–677 (1988).

    Article  Google Scholar 

  10. D. S. Balsara and D. S. Spicer, “A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations,” J. Comput. Phys. 149, 270–292 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  11. T. J. Barth, “On Unstructured Grids and Solvers,” in Computational Fluid Dynamics (Von Karman Institute for Fluid Dynamics, 1990), Lect. Ser. 1990-04.

  12. A. Suresh and H. T. Huynh, “Accurate Monotonicity Preserving Scheme with Runge-Kutta Time-Stepping,” J. Comput. Phys. 136, 83–99 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  13. D. S. Balsara and C.-W. Shu, “Monotonicity Preserving Weighted Essentially Nonoscillatory Schemes with Increasingly High Order of Accuracy,” J. Comput. Phys. 160, 405–452 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  14. G.-S. Jiang and C. C. Wu, “A High-Order WENO Finite Difference Scheme for the Equation of Ideal Magnetohydrodynamics,” J. Comput. Phys. 150, 561–594 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  15. D. S. Balsara, “Second-Order-Accurate Schemes for Magnetohydrodynamics with Divergence-Free Reconstruction,” Astrophys. J. Suppl. 151, 149–184 (2004).

    Article  Google Scholar 

  16. J. Han and H. Tang, “An Adaptive Moving Mesh Method for Two-Dimensional Ideal Magnetohydrodynamics,” J. Comput. Phys. 220, 791–812 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Orszag and C. M. Tang, “Small-Scale Structure of Two-Dimensional Magnetohydrodynamic Turbulence,” J. Fluid Mech. 90, 129–143 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Popov.

Additional information

Original Russian Text © M.V. Popov, S.D. Ustyugov, 2008, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2008, Vol. 48, No. 3, pp. 505–528.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, M.V., Ustyugov, S.D. Piecewise parabolic method on a local stencil for ideal magnetohydrodynamics. Comput. Math. and Math. Phys. 48, 477–499 (2008). https://doi.org/10.1134/S0965542508030111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542508030111

Keywords

Navigation