Skip to main content
Log in

Existence and stability analysis for the Carleman kinetic system

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A global existence theorem for the discrete Carleman system in the Sobolev class W 1,2 is proved by the Leray-Schauder topological degree method, which was not previously applied to discrete kinetic equations. The instability of the nonequilibrium steady flow on a bounded interval is established in the linear approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. M. Sultangazin, Nonlinear Discrete Velocity Models of the Boltzmann Equation (Nauka, Alma-Ata, 1985) [in Russian].

    Google Scholar 

  2. R. Monaco and L. Preziosi, Fluid Dynamic Applications of the Discrete Boltzmann Equation (World Scientific, Singapore, 1991).

    MATH  Google Scholar 

  3. J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéires (Dunod, Paris, 1969; Mir, Moscow, 1972).

    Google Scholar 

  4. V. V. Vedenyapin, “Differential Forms in Spaces without a Norm: A Theorem on the Uniqueness of Boltzmann’s H-Function,” Usp. Mat. Nauk 43(1), 159–179 (1988).

    MathSciNet  Google Scholar 

  5. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry: Methods and Applications (Springer-Verlag, New York, 1984–1990; Editorial, Kiev, 2001).

    Google Scholar 

  6. D. H. Sattinger, Topics in Stability and Bifurcation Theory (Springer-Verlag, Berlin, 1972).

    Google Scholar 

  7. R. A. Adams, Sobolev Spaces (Academic, New York, 1975).

    MATH  Google Scholar 

  8. M. A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations (GITTL, Moscow, 1956; Pergamon, New York, 1964).

    Google Scholar 

  9. L. Nirenberg, Functional Analysis (Courant Institute, New York Univ., New York, 1975; Mir, Moscow, 1977).

    Google Scholar 

  10. A. V. Bobylev, Exact and Approximate Methods in the Theory of Nonlinear Boltzmann and Landau Kinetic Equations (Inst. Prikl. Mat. Akad. Nauk SSSR, Moscow, 1987) [in Russian].

    Google Scholar 

  11. P. Hartman, Ordinary Differential Equations (Wiley, New York, 1973).

    MATH  Google Scholar 

  12. E. L. Ince, Ordinary Differential Equations (Dover, New York, 1927; ONTI, Kharkov, 1939).

    MATH  Google Scholar 

  13. V. V. Aristov, “Solution to the Boltzmann Equation at Small Knudsen Numbers,” Zh. Vychisl. Mat. Mat. Fiz. 44, 1127–1140 (2004) [Comput. Math. Math. Phys. 44, 1069–1081 (2004)].

    MATH  MathSciNet  Google Scholar 

  14. C. Cercignani, Theory and Application of the Boltzmann Equation (Elsevier, New York, 1975; Mir, Moscow, 1978).

    MATH  Google Scholar 

  15. M. N. Kogan, Rarefied Gas Dynamics (Nauka, Moscow, 1967; Plenum, New York, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Ilyin.

Additional information

Original Russian Text © O.V. Ilyin, 2007, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2007, Vol. 47, No. 12, pp. 2076–2087.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilyin, O.V. Existence and stability analysis for the Carleman kinetic system. Comput. Math. and Math. Phys. 47, 1990–2001 (2007). https://doi.org/10.1134/S0965542507120093

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542507120093

Keywords

Navigation