Skip to main content
Log in

Direct numerical simulation of one type of compressible turbulence interacting with a shock wave

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

Direct numerical simulations of compressible turbulence interacting with an initially plane shock wave are presented. The underlying model is based on the numerical solution of the Euler equations combined with direct statistical simulation. Steady-state isentropic isotropic turbulence is considered. The amplification factors for fluctuations of the thermodynamic variables, velocity, vorticity, and kinetic energy of fluctuations are analyzed; and the correlation coefficients between flow variables are studied for Mach numbers ranging from 1.2 to 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Andreopoulos, T. H. Agui, and G. Briassulis, “Shock Wave-Turbulence Interactions,” Ann. Rev. Fluid. Mech. 32, 309–345 (2000).

    Article  MathSciNet  Google Scholar 

  2. S. Jamme, J.-B. Cazalbou, F. Torres, and P. Chassaing, “Direct Numerical Simulation of the Interaction between a Shock Wave and Various Types of Isotropic Turbulence,” Flow, Turbulence Combustion 68, 227–268 (2002).

    Article  MATH  Google Scholar 

  3. K. Mahesh, S. K. Lele, and P. Moin, “The Influence of Entropy Fluctuations on the Interaction of Turbulence with a Shock Wave,” J. Fluid Mech. 334, 353–379 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Lee, S. K. Lele, and P. Moin, “Interaction of Isotropic Turbulence with Shock Wave: Effect of Shock Strength,” J. Fluid Mech. 340, 225–247 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  5. D. Rotman, “Shock Wave Effects on a Turbulent Flow,” Phys. Fluids A 3, 1792–1806 (1991).

    Article  MATH  Google Scholar 

  6. O. A. Azarova, “Numerical Analysis of Turbulence-Shock Wave Interaction in a Compressible Gas Flow,” Zh. Vychisl. Mat. Mat. Fiz. 44, 532–541 (2004) [Comput. Math. Math. Phys. 44, 514–522 (2004)].

    MathSciNet  Google Scholar 

  7. O. A. Azarova and V. E. Yanitskii, “Numerical Analysis of the Statistical Characteristics of Density Fluctuations in a Flow with a Shock Wave,” Zh. Vychisl. Mat. Mat. Fiz. 38, 1751–1757 (1998) [Comput. Math. Math. Phys. 38, 1680–1685 (1998)].

    MathSciNet  Google Scholar 

  8. O. A. Azarova and V. E. Yanitskii, “Fluctuations in a Gas Flow with a Shock Wave,” Zh. Vychisl. Mat. Mat. Fiz. 40, 1753–1760 (2000) [Comput. Math. Math. Phys. 40, 1682–1689 (2000)].

    Google Scholar 

  9. O. A. Azarova and V. E. Yanitskii, “Simulation of a Turbulent Compressible Gas Flow with Shock Waves,” Mat. Model. 14(8), 56–60 (2002).

    MATH  Google Scholar 

  10. V. G. Grudnitsky and Yu. A. Prokhorchuk, “A Method for Constructing Difference Schemes with Arbitrary Order of Approximation of Partial Differential Equations,” Dokl. Akad. Nauk SSSR 234, 1249–1252 (1977).

    MathSciNet  Google Scholar 

  11. O. M. Belotserkovskii, V. G. Grudnitsky, and Yu. A. Prokhorchuk, “Second-Order Accurate Difference Scheme on the Minimal Stencil for Hyperbolic Equations,” Zh. Vychisl. Mat. Mat. Fiz. 23, 119–126 (1983).

    Google Scholar 

  12. V. I. Artem’ev, V. I. Bergel’son, I. V. Nemchinov, et al., “Change of Regime in Supersonic Flow past an Obstacle Preceded by a Thin Channel of Reduced Density,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 146–151 (1989).

  13. Yu. F. Kolesnichenko, V. G. Brovkin, O. A. Azarova, et al., “Microwave Energy Release Regimes for Drag Reduction in Supersonic Flows,” AIAA Paper No. 2002-0353, 1–13 (2002).

  14. Yu. F. Kolesnichenko, V. G. Brovkin, O. A. Azarova, et al., “MW Energy Deposition for Aerodynamic Application,” AIAA Paper No. 2003-361, 1–11 (2003).

  15. Yu. F. Kolesnichenko, O. A. Azarova, V. G. Brovkin, et al., “Basics in Beamed MW Energy Deposition for Flow/Flight Control,” AIAA Paper No. 2004-0669, 1–14 (2004).

  16. F. V. Shugaev and L. S. Shtemenko, Propagation and Reflection of Shock Waves (World Scientific, Singapore, 1998), pp. 164–166.

    MATH  Google Scholar 

  17. O. A. Azarova, L. S. Shtemenko, and F. V. Shugaev, “Numerical Modeling of Shock Propagation through a Turbulent Flow,” Comput. Fluid Dyn. J. 12(2), 41–45 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Azarova.

Additional information

Original Russian Text © O.A. Azarova, 2007, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2007, Vol. 47, No. 11, pp. 1937–1948.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azarova, O.A. Direct numerical simulation of one type of compressible turbulence interacting with a shock wave. Comput. Math. and Math. Phys. 47, 1856–1866 (2007). https://doi.org/10.1134/S0965542507110103

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542507110103

Keywords

Navigation