Skip to main content
Log in

Calculating the branch points of the eigenvalues of the Coulomb spheroidal wave equation

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A method for computing the eigenvalues λ mn (b, c) and the eigenfunctions of the Coulomb spheroidal wave equation is proposed in the case of complex parameters b and c. The solution is represented as a combination of power series expansions that are then matched at a single point. An extensive numerical analysis shows that certain b s and c s are second-order branch points for λ mn (b, c) with different indices n 1 and n 2, so that the eigenvalues at these points are double. Padé approximants, quadratic Hermite-Padé approximants, the finite element method, and the generalized Newton method are used to compute the branch points b s and c s and the double eigenvalues to high accuracy. A large number of these singular points are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. G. Baber and H. R. Hasse, “The Two Centre Problem in Wave Mechanics,” Proc. Philos. Soc. Cambridge 31, 564–581 (1935).

    Article  MATH  Google Scholar 

  2. I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  3. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972; Nauka, Moscow, 1979).

    MATH  Google Scholar 

  4. K. Flammer, Tables of Spheroidal Wave Functions (Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1962) [in Russian].

    Google Scholar 

  5. L.-W. Li, X.-K. Kang, and M.-S. Leong, Spheroidal Wave Functions in Electromagnetic Theory (Wiley, New York, 2001).

    Google Scholar 

  6. P. E. Falloon, P. C. Abbott, and J. B. Wang, “Theory and Computation of the Spheroidal Wave Functions,” J. Phys. A: Math. General 36, 5477–5495 (2003); http://internal.physics.uwa.edu.au/falloon/spheroidal/spheroidal.html; http://arxiv.org/ftp/math-ph/papers/0212/0212051.pdf.

    Article  MATH  MathSciNet  Google Scholar 

  7. B. E. Barrowes, K. O’Neill, T. M. Grzegorczyk, and J. A. Kong, “On the Asymptotic Expansion of the Spheroidal Wave Function and Its Eigenvalues for Complex Size Parameter,” Stud. Appl. Math. 113, 271–301 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  8. E. L. Ince, Ordinary Differential Equations (Dover, New York, 1927; ONTI, Kharkov, 1939).

    MATH  Google Scholar 

  9. G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants (Addison-Wesley, Reading, Mass., 1981; Mir, Moscow, 1986).

    Google Scholar 

  10. R. E. Shafer, “On Quadratic Approximation,” SIAM J. Num. Anal. 11, 447–460 (1974).

    Article  MATH  MathSciNet  Google Scholar 

  11. S. L. Skorokhodov and D. V. Khristoforov, “Calculation of the Branch Points of the Eigenfunctions Corresponding to Wave Spheroidal Functions,” Zh. Vychisl. Mat. Mat. Fiz. 46, 1195–1210 (2006) [Comput. Math. Math. Phys. 46, 1132–1146 (2006)].

    MathSciNet  Google Scholar 

  12. S. L. Skorokhodov and D. V. Khristoforov, “Branch Points of Eigenvalues Corresponding to Spheroidal Wave Functions,” Abstract of Papers of the International Conference “Tikhonov and Contemporary Mathematics,” Moscow, June 19–25, 2006: Functional Analysis and Differential Equations (Moscow, 2006), pp. 259–260.

  13. V. V. Golubev, Lectures on the Analytical Theory of Differential Equations (Gostekhteorizdat, Moscow, 1950) [in Russian].

    Google Scholar 

  14. A. O. Gel’fond, Calculus of Finite Differences (Fizmatlit, Moscow, 1967) [in Russian].

    Google Scholar 

  15. G. D. Birkhoff, “Formal Theory of Irregular Difference Equations,” Acta Math. 54, 205–246 (1930).

    Article  MathSciNet  MATH  Google Scholar 

  16. G. D. Birkhoff and W. Trjitzinsky, “Analytic Theory of Singular Difference Equations,” Acta Math. 60, 1–89 (1932).

    Article  MATH  MathSciNet  Google Scholar 

  17. J. Wimp and D. Zeilberger, “Resurrecting the Asymptotics of Linear Recurrences,” J. Math. Anal. Appl. 111, 162–176 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  18. L. Bieberbach, Analytic Continuation (Springer-Verlag, Berlin, 1955; Nauka, Moscow, 1967).

    Google Scholar 

  19. A. A. Abramov, “Selection of Slowly Growing Sequences Whose Members Satisfy Given Recurrences,” Zh. Vychisl. Mat. Mat. Fiz. 45, 661–668 (2005) [Comput. Math. Math. Phys. 45, 637–644 (2005)].

    MATH  Google Scholar 

  20. A. A. Abramov and S. V. Kurochkin, “Highly Accurate Calculation of Angular Spheroidal Functions,” Zh. Vychisl. Mat. Mat. Fiz. 46, 12–17 (2006) [Comput. Math. Math. Phys. 46, 10–15 (2006)].

    MATH  MathSciNet  Google Scholar 

  21. S. L. Skorokhodov, “Quasi-Self-Similarity of Eigenvalues Corresponding to Spheroidal Wave Functions,” Proceedings of XVI Crimean Autumn Mathematical School-Symposium on Spectral and Evolution Problems (KROMSH-2005) (Simferopol, 2006), Vol. 16, pp. 100–111.

  22. G. Blanch and D. S. Clemm, “The Double Points of Mathieu’s Differential Equation,” Math. Comput. 23(105), 97–108 (1969).

    Article  MATH  MathSciNet  Google Scholar 

  23. A. I. Bogolyubskii and S. L. Skorokhodov, “Numerical-Analytical Method for Calculating Soliton Solutions in Field Theory Model,” Proceedings of XIII Crimean Autumn Mathematical School-Symposium on Spectral and Evolution Problems (Simferopol, 2004), Vol. 14, pp. 152–162.

  24. A. I. Bogolyubsky and S. L. Skorokhodov, “Pade Approximants, Symbolic Evaluations, and Computation of Solitons in Two-Field Antiferromagnet Model,” Programmirovanie, No. 2, 51–56 (2004) [Program. Comput. Software 30, 95–99 (2004)].

  25. S. P. Suetin, “Padé Approximants and Effective Analytic Continuation of Power Series,” Usp. Mat. Nauk 57(1), 45–142 (2002).

    MathSciNet  Google Scholar 

  26. D. B. Khrebtukov, “The Exact Numerical Solution to a Schrödinger Equation with Two-Coulomb Centers Plus Oscillator Potential,” J. Phys. A: Math. General 25, 3319–3328 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  27. E. A. Solov’ev, “The Advanced Adiabatic Approach and Inelastic Transitions via Hidden Crossings,” J. Phys. B: Atomic, Molecular Optic. Phys. 38, R153–R194 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Skorokhodov.

Additional information

Original Russian Text © S.L. Skorokhodov, D.V. Khristoforov, 2007, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2007, Vol. 47, No. 11, pp. 1880–1897.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skorokhodov, S.L., Khristoforov, D.V. Calculating the branch points of the eigenvalues of the Coulomb spheroidal wave equation. Comput. Math. and Math. Phys. 47, 1802–1818 (2007). https://doi.org/10.1134/S0965542507110073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542507110073

Keywords

Navigation