Skip to main content
Log in

A postprocessor for a posteriori error estimation of computed flow parameters

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The possibility is explored of creating a postprocessor for a posteriori error estimation of computed target functionals based on the residual generated by a high-accuracy stencil and adjoint parameters as applied to a numerical solution. The applicability of this approach to the supersonic Euler equations is confirmed by computing the density at a control point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Alekseev, “A Posteriori Error Estimation of a Finite Difference Solution Based on Adjoint Equations and Differential Representations,” Zh. Vychisl. Mat. Mat. Fiz. 45, 1213–1225 (2005) [Comput. Math. Math. Phys. 45, 1172–1184 (2005)].

    MATH  Google Scholar 

  2. M. B. Giles and E. Suli, “Adjoint Methods for PDEs: a Posteriori Error Analysis and Postprocessing by Duality,” Acta Numerica 11, 145–206 (2002).

    Article  MathSciNet  Google Scholar 

  3. D. Venditti and D. Darmofal, “Grid Adaptation for Functional Outputs: Application to Two-Dimensional Inviscid Flow,” J. Comput. Phys. 176, 40–69 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  4. A. K. Alekseev and S. V. Zhurin, Postprocessor for a Posteriori Error Estimation of Computed Flow Parameters, in Proceedings of XIV International Conference on Computational Mechanics and Modern Applied Software Systems, Alushta, 25–31 May 2005 (Vuzovskaya Kniga, Moscow, 2005), pp. 36–37.

    Google Scholar 

  5. Yu. I. Shokin and N. N. Yanenko, The Method of Differential Approximation (Nauka, Moscow, 1985) [in Russian].

    MATH  Google Scholar 

  6. G. I. Marchuk, Adjoint Equations and Analysis of Complex Systems (Nauka, Moscow, 1992; Kluwer Academic, Dordrecht, 1995).

    MATH  Google Scholar 

  7. P. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, 1976; Mir, Moscow, 1980).

    MATH  Google Scholar 

  8. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolical Systems (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  9. A. V. Rodionov, “Monotone Second-Order Accurate Scheme for Shock-Capturing Calculation of Nonequilibrium Flows,” Zh. Vychisl. Mat. Mat. Fiz. 27, 585–593 (1987).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.K. Alekseev, S.V. Zhurin, 2006, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2006, Vol. 46, No. 9, pp. 1704–1710.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, A.K., Zhurin, S.V. A postprocessor for a posteriori error estimation of computed flow parameters. Comput. Math. and Math. Phys. 46, 1623–1628 (2006). https://doi.org/10.1134/S0965542506090132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542506090132

Keywords

Navigation