Skip to main content
Log in

High-order accurate equations describing vibrations of thin bars

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A method for deriving one-dimensional wave propagation equations in thin inhomogeneous anisotropic bars based on the mathematical homogenization theory for periodic media is used to obtain equations governing the longitudinal and transverse vibrations of a homogeneous circular bar. The equations are derived up to O8) terms and take into account variable body forces and surface loads. Here, ε is the ratio of the bar’s typical thickness to the typical wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Grigolyuk and I. T. Selezov, “Nonclassical Theories of Bar, Plate, and Shell Vibrations,” in Achievements in Science and Technology: Solid Mechanics (VINITI, Moscow, 1973), Vol. 5 [in Russian].

    Google Scholar 

  2. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity (Cambridge University Press, Cambridge, 1927; ONTI, Moscow, 1935).

    Google Scholar 

  3. S. Timoshenko and D. H. Young, Vibration Problems in Engineering (Van Nostrand, 1955; Nauka, Moscow, 1967).

    Google Scholar 

  4. Ya. S. Uflyand, “Wave Propagation in Transverse Vibrations of Bars and Plates,” Prikl. Mat. Mekh. 12(3), 287–300 (1948).

    MATH  MathSciNet  Google Scholar 

  5. G. A. Nariboli, “Asymptotic Theory of Wave-Motion in Rods (Longitudinal Wave Motion),” Z. Angew. Math. Mech. 49, 525–531 (1969).

    MATH  Google Scholar 

  6. S. S. Kvashnina, “One-Dimensional Model of Dynamic Bending of a Thin Circular Elastic Bar,” in Proceedings of Institute of Mechanics, Moscow State University (Mosk. Gos. Univ., Moscow, 1974), Vol. 31, pp. 178–183 [in Russian].

    Google Scholar 

  7. S. S. Kvashnina-Samarina, Candidate’s Dissertation in Physics and Mathematics (MGU, Moscow, 1978).

    Google Scholar 

  8. G. P. Panasenko, “Asymptotic Analysis of Bar Systems (I),” Russ. J. Math. Phys. 2(3), 325–352 (1994).

    MATH  MathSciNet  Google Scholar 

  9. N. S. Bakhvalov, K. Yu. Bogachev, and M. E. Eglit, “Analysis of the Effective Dispersive Equations Describing Wave Propagation in Inhomogeneous Thin Bars,” Dokl. Akad. Nauk 387(6), 749–753 (2002) [Dokl. Math. 65, 455–459 (2002)].

    MathSciNet  Google Scholar 

  10. H. S. Bakhvalov, “Homogenization of Partial Differential Equations with Rapidly Oscillating Coefficients,” Dokl. Akad. Nauk SSSR 221, 516–519 (1975).

    MATH  MathSciNet  Google Scholar 

  11. N. S. Bakhvalov and G. P. Panasenko, Homogenization: Averaging Processes in Periodic Media (Nauka, Moscow, 1984; Kluwer, Dordrecht, 1989).

    Google Scholar 

  12. N. S. Bakhvalov and M. E. Eglit, “Equations of Higher Order Accuracy Describing the Vibrations of Thin Plate,” Prikl. Mat. Mekh. 69, 656–675 (2005).

    Google Scholar 

  13. V. I. Utesheva, “Approximate Equations Governing the Dynamics of as Circular Elastic Bar,” Izv. Akad. Nauk SSSR, Ser. Mekh. Mashinostr, No. 4, 154–161 (1963).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Original Russian Text © N.S. Bakhvalov, M.E. Eglit, 2006, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2006, Vol. 46, No. 3, pp. 457–472.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakhvalov, N.S., Eglit, M.E. High-order accurate equations describing vibrations of thin bars. Comput. Math. and Math. Phys. 46, 437–452 (2006). https://doi.org/10.1134/S0965542506030109

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542506030109

Keywords

Navigation