Skip to main content
Log in

Numerical study of the effect of fuel droplets on the combustion proceeding under typical conditions of hybrid rocket engines

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The results of numerical simulation of a gas-droplet fuel mixture combustion in an oxidizer flow under the conditions typical of hybrid rocket engines are presented. The effect of the size and rate of supply of fuel droplets on the combustion completeness, temperature, and position of the diffusion flame in the boundary layer of the oxidizer flow has been studied. It is shown that the influence due to the liquid fuel droplets manifests itself as a local decrease of gas temperature and an increase of the concentration of the gaseous fuel in the immediate vicinity of droplets. The addition of droplets to the gaseous fuel flow results in a slight decrease of the flame thickness and flame temperature, which, however, experience no large-scale perturbations as a result of droplet movement and remain almost stationary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. K.K. Kuo and M.J. Chiaverini, Fundamentals of hybrid rocket combustion and propulsion, Progress in Astronautics and Aeronautics, 2007, Vol. 218. P. 1–36.

    Google Scholar 

  2. J. Durand, J. Lestrade, and J. Anthoine, Restitution methodology for space and time-dependent solid-fuel port diameter evolution in hybrid rocket engines, Aerospace Sci. and Technol., 2021, Vol. 110, No. 106497.

  3. Y. Pal, S. Mahottamananda, S. Palateerdham, S. Subha, and A. Ingenito, Review on the regression rate-improvement techniques and mechanical performance of hybrid rocket fuels, FirePhysChem., 2021, Vol. 1, No. 4, P. 272–282.

    Article  Google Scholar 

  4. C. Li, C. Kai, and H. Tian, Numerical analysis of combustion characteristics of hybrid rocket motor with multisection swirl injection, Acta Astronaut., 2016, Vol. 123, P. 26–36.

    Article  ADS  Google Scholar 

  5. M. Bouziane, A. Bertoldi, P. Hendrick, and M. Lefebvre, Experimental investigation of the axial oxidizer injectors geometry on a 1-kN paraffin-fueled hybrid rocket motor, FirePhysChem., 2021, Vol. 1, No. 4, P. 231–243.

    Article  Google Scholar 

  6. M. Li, S. Wei, C. Hung, and J. Wu, Experimental and numerical investigation of swirling H2O2 and polypropylene hybrid rocket motor with regenerative cooling, Acta Astronaut., 2022, Vol. 190, P. 283–298.

    Article  ADS  Google Scholar 

  7. H. Zhu, H. Tian, and G. Cai, Hybrid uncertainty-based design optimization and its application to hybrid rocket motors for manned lunar landing, Chin. J. Aeronaut., 2017, Vol. 30, No. 2, P. 719–725.

    Article  Google Scholar 

  8. D. Soares, E. Andrade, and G. Langel, Upper stage liquid propellant rocket engine: a case analysis, J. Aerospace Technol. and Managment, 2021, Vol. 13, P. 11–12.

    Google Scholar 

  9. A. Karabeyoglu, G. Zilliac, B. Cantwell, D. DeZilwa, and P. Castellucci, Scale-up tests of high regression rate paraffin-based hybrid rocket fuels, J. Propuls. and Power, 2004, Vol. 20, P. 1037–1045.

    Article  Google Scholar 

  10. M. Karabeyoglu, B. Cantwell, and D. Altman, Development and testing of paraffin-based hybrid rocket fuels, 37th AIAAASME/SAE/ASEE Jt. Propuls. Conf. Exhib., 2001, No. 4503, P. 1–24.

  11. S. Ben-Basat and A. Gany, Heat and mass transfer analysis for paraffin/nitrous oxide burning rate in hybrid propulsion, Acta Astronaut., 2016, Vol. 120, P. 121–128.

    Article  ADS  Google Scholar 

  12. A. Chandler, E. Jens, B. Cantwell, and G. Hubbard, Visualization of the liquid layer combustion of paraffin fuel for hybrid rocket applications, AIAA Paper, 2012, Vol. 3, No. 3961.

  13. I. Nakagawa and S. Hikone, Study on the regression rate of paraffin-based hybrid rocket fuels, J. Propuls. and Power, 2011, Vol. 27, No. 6, P. 1276–1279.

    Article  Google Scholar 

  14. G. Leccese, D. Bianchi, and F. Nasuti, Simulations of paraffin-based hybrid rocket motors and comparison with experiments, AIAA Propuls. and Energy Forum, 2017, No. 4737.

  15. A.V. Voronetskii, K.Yu. Arefiev, and M.A. Abramov, Simulation study for injection of two-phase fuel mixture into a cylindrical afterburner with asymmetric air inlet, Thermophysics and Aeromechanics, 2020, Vol. 27, No. 6, P. 793–810.

    Article  ADS  Google Scholar 

  16. Y. Tang, W. Zhang, S. Chen, H. Yu, R. Shen, L. DeLuca, and Y. Ye, A novel polyethyleneparticles/parafin-based self-disintegration fuel for hybrid rocket propulsion, Inter. J. Energ. Mater. Chem. Propuls., 2018, Vol. 17, P. 205–216.

    Google Scholar 

  17. A.N. Shiplyuk, S.V. Lukashevich, V.I. Simagina, O.V. Netskina, and O.V. Komova, Analysis of the effect of boron-containing compounds and combustion catalysts on paraffin combustion rate in an oxidizer flow, J. Physics: Conf. Series: 34th Inter. Conf. on Interaction of Intense Energy Fluxes with Matter, 2020, Vol. 1556, No. 1.

  18. A. Coronetti and W. Sirignano, Numerical analysis of hybrid rocket combustion, J. Propuls. and Power, 2013, Vol. 29, No. 2, P. 371–384.

    Article  Google Scholar 

  19. A.N. Shiplyuk, S.V. Lukashevich, V.I. Simagina, O.V. Netskina, and O.V. Komova, An experimental study of the combustion of paraffin and ceresin with the addition of metal-organic compounds in an oxygen stream, J. Physics: Conf. Series: XVI All-Russian Seminar with Inter. Participation “Dynamics of Multiphase Media”, 2019, Vol. 1404, No. 1.

  20. A.P. Makasheva and A. Zh. Naimanova, Numerical simulation of a multicomponent mixing layer with solid particles, Thermophysics and Aeromechanics, 2019, Vol. 26, No. 4, P. 481–497.

    Article  ADS  Google Scholar 

  21. L. Merotto and A. Mazzetti, Numerical simulation of combustion processes in hybrid rocket engines using OpenFoam and COOLFluiD codes, 5th Europ. Conf. for Aeronautics and Space Sci. Munich, Germany, 2013.

  22. Y. Pal, A. Raja, and K. Gopalakrishnan, Theoretical and experimental heat of combustion analysis of paraffin-based fuels as preburn characterization for hybrid rocket, J. Aerospace Technol. and Managment, 2020, Vol. 12, No. e4520.

  23. C. Carmicino, F. Scaramuzzino, and A. Sorge, Trade-off between paraffin-based and aluminum-loaded HTPB fuels to improve performance of hybrid rocket fed with N2O, Aerospace Sci. and Technol., 2014, Vol. 37, P. 81–92.

    Article  Google Scholar 

  24. N. Mahottamananda, P. Nagarajan, and Y. Pal, Regression rate characterization of htpb/paraffin based solid fuels for hybrid rocket, Propellants, Explosives, Pyrotechnics, 2020, Vol. 45, P. 17–55.

    Article  Google Scholar 

  25. M. Migliorino, D. Bianchi, and F. Nasutil, Numerical analysis of paraffin-wax/oxygen hybrid rocket engines, J. Propuls. and Power, 2020, Vol. 36, No. 6, P. 806–819.

    Article  Google Scholar 

  26. G. Di Martino, S. Mungiguerra, and C. Carmicino, Computational fluid-dynamic modeling of the internal ballistics of paraffin-fueled hybrid rocket, Aerospace Sci. and Technol., 2019, Vol. 89, P. 431–444.

    Article  Google Scholar 

  27. J. Durand, F. Raynaud, J. Lamet, L. Tesse, and J. Lestrade, Numerical study of fuel regression in hybrid rocket engine, AIAA Propuls. and Energy, 2018, No. 4593.

  28. M. Calabro, L. DeLuca, S. Frolov, L. Galfetti, Progress in propulsion physics, EUCASS Book Series Advances in Aerospace Sci., 2016, Vol. 8, P. 263–282.

    Google Scholar 

  29. C. Carmicino, G. Gallo, and R. Savino, Self-consistent surface-temperature boundary condition for liquefying-fuel-based hybrid rockets internal-ballistics simulation, Inter. J. Heat and Mass Transfer, 2021, Vol. 169, No. 120928.

  30. P.J. O’Rourke, Statistical properties and numerical implementation of a model for droplet dispersion in a turbulent gas, J. Computat. Phys., 1989, Vol. 83, No. 2, P. 345–360.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. F. Menter, M. Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model, Heat and Mass Transfer, 2003, Vol. 4, P. 625–632.

    Google Scholar 

  32. S. Flows and M. Sommerfeld, The best practice guidelines for computational fluid dynamics of dispersed multiphase flows, ERCOFTAC, 2008, Vol. 1, P. 12–35.

    Google Scholar 

  33. T. Clayton, Multiphase Flow Handbook, Taylor & Francis Group, 2006, Vol. 1, P. 79–119.

    MATH  Google Scholar 

  34. W. Ranz and W. Marshall, Evaporation from drops, Chem. Engng Progress, 1952, Vol. 48, P. 141–146.

    Google Scholar 

  35. Y. Tong, P. Yuanjiang, Z. Bei-Jing, S. Sibendu, L. Tianfeng, and L. Kai, A compact skeletal mechanism for n-dodecane with optimized semi-global low-temperature chemistry for diesel engine simulations, Fuel, 2017, Vol. 191, P. 339–349.

    Article  Google Scholar 

  36. A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Skeletal mechanism reduction through species-targeted sensitivity analysis, Combustion and Flame, 2015, Vol. 163, P. 382–393.

    Article  MATH  Google Scholar 

  37. A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Lumping and reduction of detailed kinetic schemes: An effective coupling, Industr. and Engng Chem. Res., 2014, Vol. 53, No. 22, P. 9004–9016.

    Article  MATH  Google Scholar 

  38. E. Ranzi, A. Frassoldati, A. Stagni, M. Pelucchi, A. Cuoci, and T. Faravelli, Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels, Inter. J. Chem. Kinetics, 2014, Vol. 46, P. 512–542.

    Article  Google Scholar 

  39. L. Fangqing, A thorough description of how wall functions are implemented in OpenFOAM, Proc. of CFD with Opensource Software, Gothenburg, 2016.

  40. The open source CFD toolbox. URL: https://www.openfoam.com (access date 10.27.2022).

  41. M. Kampili, Implementation of decay heat model as a submodel in Lagrangian library for reacting Parcel Foam solver, Proc. of CFD with OpenSource Software, Gothenburg, 2017.

  42. F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics. An Advanced Introduction with OpenFOAM and Matlab, Springer International Publishing, Switzerland, 2016, P. 188–191.

    MATH  Google Scholar 

  43. E. Hairer, P. Nørsett, and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 2nd. ed., Berlin etc.: Springer-Verlag, 1996, Vol. 14, P. 71–89.

    MATH  Google Scholar 

  44. H. Kassem, K. Saqr, H. Aly, M. Sies, and M. Wahid, Implementation of the eddy dissipation model of turbulent non-premixed combustion in OpenFOAM, Inter. Commun. Heat Mass Transfer, 2011, Vol. 38, No. 3, P. 363–367.

    Article  Google Scholar 

  45. B. Fraga, T. Stoesser, C. Chris, and S. Socolofsky, A LES-based Eulerian-Lagrangian approach to predict the dynamics of bubble plumes, Ocean Modelling, 2015, Vol. 97, P. 27–36.

    Article  ADS  Google Scholar 

  46. A. Mazzetti, Numerical modeling and simulations of combustion processes in hybrid rocket engines, Ph.D. thesis, Politecnico di Milano, 2014, Vol. 1.

  47. A. Petrarolo, M. Kobald, and S. Schlechtriem, Visualization of combustion phenomena in paraffin-based hybrid rocket fuels at super-critical pressures, AIAA Propuls. and Energy Forum, 2018, No. 4927.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kosyakov.

Additional information

This work was supported by the Government of the Russian Federation (State registration number 121030500154-2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosyakov, V.A., Fursenko, R.V. & Shiplyuk, A.N. Numerical study of the effect of fuel droplets on the combustion proceeding under typical conditions of hybrid rocket engines. Thermophys. Aeromech. 30, 93–108 (2023). https://doi.org/10.1134/S0869864323010110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864323010110

Keywords

Navigation