Skip to main content
Log in

Numerical simulation and optimization of ionic wind heat sink with needle-fin electrode

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

In this paper, the characteristics of the electric field, flow field, and temperature field of ionic wind heat sink are studied, respectively. The results show that the heat sink achieves the best performance when the ratio of fin spacing to thickness is 5, the electrode spacing is 5 mm, and the needle position is 0. Furthermore, a two-stage structure ionic wind heat sink is proposed and optimized. The optimized average wind velocity increased by 30.8 % to 3.57 m/s compared to the single-stage structure. This work enriches the knowledge of electrode configuration and promotes the application of ionic wind heat sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

A :

area of radiation surface, m2

A out :

area of ionic wind outlet, m2

d :

stage spacing, mm

d fin :

fin spacing, mm

d outlet :

the reserved air gap at the outlet of the numerical model, mm

μ E :

ionic mobility, m2/(V·s)

σ 2 :

wind velocity variance

ρ q :

space charge density, C/m3

r :

curvature radius of emitter electrode, mm

ε 0 :

vacuum dielectric constant

μ :

dynamic viscosity, N·s/m2

E :

electric field strength, V/m

e :

elementary charge, C

Re:

Reynolds number

F EHD :

electric field force of electro-hydrodynamics, N

λ :

fluid thermal conductivity, W/(m·K)

h :

coefficient of convective heat transfer, W/(m2·K)

ΔT :

temperature difference between cooled surface and environment, °C or K

W fin :

width of Fin Electrode in 2D Model, m

z q :

charge number

J :

current density, A/m2

T i :

ion temperature, °C

E 0 :

breakdown threshold of the electric field, V/m

p :

pressure, Pa

T :

heat source temperature during the experiment, °C or K

T 0 :

reference temperature (ambient temperature), °C or K

Nu:

Nusselt number

ΔT drop :

temperature drop, °C

u :

ionic wind velocity, m/s

V :

working voltage, kV

References

  1. K.B. Abdelmlek, Z. Araoud, K. Charrada, and G. Zissis, Optimization of the thermal distribution of multi-chip LED package, Appl. Therm. Engng, 2017, Vol. 126, P. 653–660.

    Article  Google Scholar 

  2. G. Wu, F. Zeng, and G. Zhu, Research on ventilation cooling system of communication base stations for energy saving and emission reduction, Energy and Buildings, 2017, Vol. 147, P. 67–76.

    Article  Google Scholar 

  3. S.S. Taghavi Fadaki, N. Amanifard, H.M. Deylami, and F. Dolati, Numerical analysis of the EHD driven flow with heat transfer in a smooth channel using multiple collectors, Heat Mass Transfer., 2017, Vol. 53, No. 7, P. 2445–2460.

    Article  ADS  Google Scholar 

  4. Y.Y. Tsui, Y.X. Huang, C.C. Lan, and C.C. Wang, A study of heat transfer enhancement via corona discharge by using a plate corona electrode, J. Electrostat., 2017, Vol. 87, P. 1–10.

    Article  ADS  Google Scholar 

  5. N. Gallandat, F. Bonetto, and J. Rhett Mayor, Ionic wind heat transfer enhancement in vertical rectangular channels: experimental study and model validation, J. Therm. Sci. Engng Appl., 2017, Vol. 9, No. 2.

  6. A.A. Ramadhan, N. Kapur, J.L. Summers, and H.M. Thompson, Numerical development of EHD cooling systems for laptop applications, Appl. Therm. Engng, 2018, Vol. 139, P. 144–156.

    Article  Google Scholar 

  7. M.S. June, J. Kribs, and K.M. Lyons, Measuring efficiency of positive and negative ionic wind devices for comparison to fans and blowers, J. Electrostat., 2011, Vol. 69, No. 4, P. 345–350.

    Article  Google Scholar 

  8. D.B. Go, R.A. Maturana, T.S. Fisher, and S.V. Garimella, Enhancement of external forced convection by ionic wind, Inter. J. Heat Mass Transf., 2008, Vol. 51, No. 25–26, P. 6047–6053.

    Article  MATH  Google Scholar 

  9. I.A. Elagin, P.Y. Markovskii, and Y.K. Stishkov, Experimental investigation of plate cooling by ionic wind from a needle electrode, Tech. Phys., 2020, Vol. 65, No. 4, P. 542–547.

    Article  Google Scholar 

  10. J. Feng, C. Wang, Q. Liu, and C. Wu, Enhancement of heat transfer via corona discharge by using needle-mesh and needle-fin electrodes, Inter. J. Heat Mass Transf., 2019, Vol. 130, P. 640–649.

    Article  Google Scholar 

  11. J. Wang, Y.X. Cai, W.W. Bao, H.X. Li, and Q. Liu, Experimental study of high power LEDs heat dissipation based on corona discharge, Appl. Therm. Engng, 2016, Vol. 98, P. 420–429.

    Article  Google Scholar 

  12. S. Sumariyah, A. Khuriati, S.H. Pratiwi, and E. Fachriyah, Ion wind drying with input power variation of the potato slices, J. Phys. Conf. Ser., 2020, Vol. 1524, Iss. 1, Art. 012001.

  13. N.T. Van, T.T. Bui, T.X. Dinh, C.-D. Tran, H. Phan-Thanh, T.C. Duc, and V.T. Dau, A circulatory ionic wind for inertial sensing application, IEEE Electr. Device L, 2019, Vol. 40, No. 7, P. 1182–1185.

    Article  ADS  Google Scholar 

  14. Y. Wang, W. Gao, H. Zhang, C. Huang, K. Luo, C. Zheng, and X. Gao, Insights into the role of ionic wind in honeycomb electrostatic precipitators, J. Aerosol. Sci., 2019, Vol. 133, P. 83–95.

    Article  ADS  Google Scholar 

  15. J.S. Leu, J.Y. Jang, and Y.H. Wu, Optimization of the wire electrode height and pitch for 3D electrohydrodynamic enhanced water evaporation, Inter. J. Heat Mass Trans, 2018, Vol. 118, P. 976–988.

    Article  Google Scholar 

  16. F. Lv, J. Song, P. Wang, H. Ruan, and J. Geng, Influencing factors of flow field of ionic wind induced by corona discharge in a multi-needle-to-net electrode structure under direct-current voltage, IEEE Access, 2019, Vol. 7, P. 123671–123678.

    Article  Google Scholar 

  17. J. Zhang, L. Kong, J. Qu, S. Wang, and Z. Qu, Numerical and experimental investigation on configuration optimization of the large-size ionic wind pump, Energy, 2019, Vol. 171, P. 624–630.

    Article  Google Scholar 

  18. C. Kim, D. Park, K. C. Noh, and J. Hwang, Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration, J. Electrostat., 2010, Vol. 68, No. 1, P. 36–41.

    Article  Google Scholar 

  19. J. Wang, X. Hu, X. Mo, Z. Sun, and R. Fu, Flow and heat transfer characteristics of corona wind in two symmetric divergent fins, Inter. J. Heat Mass Trans., 2020, Vol. 160, Art. 120210.

  20. J.F. Zhang, S. Wang, H.Y. Li, and Z.G. Qu, Parametric study and optimization of flow characteristics of wirenonparallel plate-type electrostatic air accelerators, J. Fluids Engng, 2018, Vol. 140, No. 10, P. 10110501–10110511.

    Article  Google Scholar 

  21. M. Rickard, D. Dunn-Rankin, F. Weinberg, and F. Carleton, Maximizing ion-driven gas flows, J. Electrostat., 2006, Vol. 64, No. 6, P. 368–376.

    Article  Google Scholar 

  22. W. Wang, L. Yang, K. Wu, C. Lin, P. Huo, S. Liu, D. Huang, and M. Lin, Regulation-controlling of boundary layer by multi-wire-to-cylinder negative corona discharge, Appl. Therm. Engng, 2017, Vol. 119, P. 438–448.

    Article  Google Scholar 

  23. K. Adamiak and P. Atten, Simulation of corona discharge in point-plane configuration, J. Electrostat., 2004, Vol. 61, No. 2, P. 85–98.

    Article  Google Scholar 

  24. H.M. Deylami, N. Amanifard, F. Dolati, R. Kouhikamali, and K. Mostajiri, Numerical investigation of using various electrode arrangements for amplifying the EHD enhanced heat transfer in a smooth channel, J. Electrostat., 2013, Vol. 71, No. 4, P. 656–665.

    Article  Google Scholar 

  25. R.B. Lakeh and M. Molki, Targeted heat transfer augmentation in circular tubes using a corona jet, J. Electrostat., 2012, Vol. 70, No. 1, P. 31–42.

    Article  ADS  Google Scholar 

  26. K. Luo, J. Wu, H.-L. Yi, and H.-P. Tan, Lattice Boltzmann modelling of electro-thermo-convection in a planar layer of dielectric liquid subjected to unipolar injection and thermal gradient, Inter. J. Heat Mass Trans., 2016, Vol. 103, P. 832–846.

    Article  Google Scholar 

  27. A.O. Ong, A.R. Abramson, and N.C. Tien, Electrohydrodynamic microfabricated ionic wind pumps for thermal management applications, J. Heat Trans., 2014, Vol. 136, No. 6, P. 061703–1–061703–11.

    Article  Google Scholar 

  28. S. Wang, J. Zhang, L. Kong, Z. Qu, and W. Tao, An numerical investigation on the cooling capacity of needlering type electrostatic fluid accelerators for round plate with uniform and non-uniform heat flux, Inter. J. Heat Mass Trans., 2017, Vol. 113, P. 1–5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ch. Wang.

Additional information

The authors declared that there is no conflict of interest.

The authors gratefully acknowledge the financial support for this research from the International Science and Technology projects of Huangpu District of Guangzhou City (2019GH02), the National Natural Science Foundation of China (51676049).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Wang, C. & Hu, Y. Numerical simulation and optimization of ionic wind heat sink with needle-fin electrode. Thermophys. Aeromech. 30, 49–68 (2023). https://doi.org/10.1134/S0869864323010079

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864323010079

Keywords

Navigation