Skip to main content
Log in

Numerical investigation of the rarefied supersonic underexpanded jet structure using the DSMC method

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The Direct Simulation Monte Carlo (DSMC) method is used to study rarefaction effects on the structure of an axisymmetric underexpanded jet. A comparison with the data of other researchers shows that DSMC simulations accurately reproduce the features of the steady shock-wave structure of the jet. Rarefaction produces a noticeable effect on the jet flow. In particular, it makes the barrel shock in the first shock cell change the type of its reflection from the axis, which leads to vanishing of the developed Mach disk and to the changes in the structure of other shock cells. For the first time, the formation of a closed reverse flow region behind the Mach disk is observed in a molecular-kinetic simulation. This phenomenon has been earlier observed only in continuum simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. V.G. Dulov and G.A. Luk’yanov, Gas Dynamics of Exhaustion Processes, Nauka, Novosibirsk, 1984.

    MATH  Google Scholar 

  2. V.S. Avduevskii, E.A. Ashratov, A.V. Ivanov, and U.G. Pirumov, Gas Dynamics of Supersonic Nonisobaric Jets, Mashinostroenie, Moscow, 1989.

    Google Scholar 

  3. V.N. Glaznev, V.I. Zapryagaev, V.N. Uskov, S.A. Gaponov, and A.A. Maslov, Jet and Unsteady Flows in Gas Dynamics, Izd. SO RAN, Novosibirsk, 2000.

    Google Scholar 

  4. E. Franquet, V. Perrier, S. Gibout, and P. Bruel, Free underexpanded jets in a quiescent medium; a review, Prog. Aero. Sci., 2015, Vol. 77, P. 25–53.

    Article  Google Scholar 

  5. J.S. Wu, S.Y. Chou, U.M. Lee, Y.L. Shao, and Y.Y. Lian, Parallel DSMC simulation of a single underexpanded jet from transition to near-continuum regime, J. Fluids Eng., 2005, Vol. 127, P. 1161–1170.

    Article  Google Scholar 

  6. A.V. Kashkovsky, Ye.A. Bondar, G.A. Zhukova, M.S. Ivanov, and S.F. Gimelshein, Object-oriented software design of real gas effects for the DSMC method, AIP Conf. Proc., 2005, Vol. 762, P. 583–588.

    Article  ADS  Google Scholar 

  7. M.S. Ivanov, A.V. Kashkovsky, P.V. Vashchenkov, and Ye.A. Bondar, Parallel object-oriented software system for DSMC modeling of high-altitude aerothermodynamic problems, AIP Conf. Proc., 2011, Vol. 1333, P. 211–218.

    Article  ADS  Google Scholar 

  8. A. Kashkovsky, A. Shershnev, and M.S. Ivanov, Efficient CUDA implementation in the DSMC method, AIP Conf. Proc., 2012, Vol. 1501, P. 511–518.

    Article  ADS  Google Scholar 

  9. A.V. Kashkovsky, 3D DSMC computations on a heterogeneous CPU-GPU cluster with a large number of GPUs, AIP Conf. Proc., 2014, Vol. 1628, P. 192–198.

    Article  ADS  Google Scholar 

  10. Jiang Zhexing, Investigation of an underexpanded axisymmetric supersonic turbulent jet exhausting from the nozzle, in: Turbulent Jets of Air, Plasma, and Real Gas, G.N. Abramovich (Ed.), Mashinostroenie, Moscow, 1967, P. 144–181.

    Google Scholar 

  11. N.N. Shelukhin, Investigation of the characteristics of a supersonic nonisobaric jet, Uch. Zap. TsAGI, 1995, Vol. 26, Nos. 1–2, P. 78–87.

    Google Scholar 

  12. V.M. Aniskin, T.A. Korotaeva, E.A. Obodovskaya, and A.O. Turchinovich, Numerical simulation of under-expanded axisymmetric microjets exhausting into a submerged space, Dokl. Akad. Nauk Vyssh. Shkoly RF, 2018, No. 1, P. 22–35.

  13. R. Courant and K.O. Friedrichs, Supersonic Flow and Shock Waves, Springer, New York, 2012.

    MATH  Google Scholar 

  14. A.I. Rylov, On impossibility of regular reflection of a steady shock wave from the axis of symmetry, J. Applied Mathematics and Mechanics, 1990, Vol. 54, Iss. 2, P. 201–203.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. D.A. Melnikov, Reflection of shock waves from the axis of symmetry, Izv. AN SSSR, Mekhanika i Mashinostroenie, 1962, No. 3, P. 24–30.

  16. E. Timofeev, S. Mölder, P. Voinovich, S.H.R. Hosseini, and K. Takayama, Shock wave reflections in axisymmetric flows, in Proc. of 23rd Inter. Symp. Shock Waves (Fort-Worth, USA, July 22–27, 2001), Arlington, USA: Univ. Texas, 2001, P. 1486–1493.

    Google Scholar 

  17. F.P. Welsh, Electron beam fluorescence measurements of shock reflection hysteresis in an under-expanded supersonic jet, in Proc. 21st Inter. Symp. Shock Waves. Fyshwick, Australia: Panther Publishing, 1997, Vol. 2, P. 863–868.

  18. B.J. Gribben, K.J. Badcock, and B.E. Richards, Numerical study of shock-reflection hysteresis in an under-expanded jet, AIAA J., 2000, Vol. 38, No. 2, P. 275–283.

    Article  ADS  Google Scholar 

  19. A. Hadjadj, A.N. Kudryavtsev, and M.S. Ivanov, Numerical investigation of shock-reflection phenomena in overexpanded supersonic jets, AIAA J., 2004, Vol. 42, No. 3, P. 570–577.

    Article  ADS  Google Scholar 

  20. C.L. Chen, S.R. Chakravarthy, and C.M. Hung, Numerical investigation of separated nozzle flows, AIAA J., 1994, Vol. 32, No. 9, P. 1836–1843.

    Article  ADS  Google Scholar 

  21. M. Frey and G. Hagemann, Restricted shock separation in rocket nozzles, J. Propul. Power, 2000, Vol. 16, No. 3, P. 478–484.

    Article  Google Scholar 

  22. B. Maté, I.A. Graur, T. Elizarova, I. Chirokov, G. Tejeda, J.M. Fernández, and S. Montero, Experimental and numerical investigation of an axisymmetric supersonic jet, J. Fluid Mech., 2001, Vol. 426, P. 177–197.

    Article  ADS  MATH  Google Scholar 

  23. P. Reijasse, F. Bouvier, and P. Servel, Experimental and numerical investigation of cap-shock structure in over-expanded thrust-optimized nozzles, West East High Speed Flow Fields, Aerospace applications from high subsonic to hypersonic regime, Barcelona, Spain: CIMNE, 2003, P. 338–345.

    Google Scholar 

  24. V.A. Goryainov, On the possibility of the flow reverse effect in free supersonic jets, Mat. Model., 2003, Vol. 15, No. 7, P. 86–92.

    MATH  Google Scholar 

  25. P.A. Skovorodko, About the nature of the recirculation zone behind a Mach disk in an underexpanded jet, AIP Conf. Proc., 2011, Vol. 1333, P. 601–606.

    Article  ADS  Google Scholar 

  26. G.F. Glotov, Local subsonic zones in supersonic jet flows, Fluid Dynamics, 1998, Vol. 33, P. 117–123.

    Article  ADS  Google Scholar 

  27. V.I. Zapryagaev, V.M. Boiko, I.N. Kavun, N.P. Kiselev, and A.A. Pivovarov, Flow structure behind the Mach disk in supersonic non-isobaric jets, AIP Conf. Proc., 2016, Vol. 1770, P. 030029–1–030029–8.

    Article  Google Scholar 

  28. D. Edgington-Mitchell, D.R. Honnery, and J. Soria, The underexpanded jet Mach disk and its associated shear layer, Phys. Fluids, 2014, Vol. 26, No. 9, P. 096101–1–096101–5.

    Article  ADS  Google Scholar 

  29. A.V. Rodionov, Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon, J. Comput. Phys., 2017, Vol. 345, P. 308–329.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. G. Ben-Dor, Shock Wave Reflection Phenomena, 2nd ed., Springer, Berlin etc., 2007.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kashkovsky.

Additional information

This study was supported by the Russian Science Foundation (Grant No. 18-11-00246-P). All computations were performed on computers of the Collective Use Center Mekhanika (Mechanics) based at ITAM SB RAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashkovsky, A.V., Kudryavtsev, A.N. & Shershnev, A.A. Numerical investigation of the rarefied supersonic underexpanded jet structure using the DSMC method. Thermophys. Aeromech. 30, 29–36 (2023). https://doi.org/10.1134/S0869864323010043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864323010043

Keywords

Navigation