Skip to main content
Log in

LDA-based experimental study of flow crisis in the Ranque—Hilsch vortex tube

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The paper discloses the study of flow crisis in the Ranque—Hilsch vortex tube with a square channel. Previous studies have found the conditions for developing the hydraulic crisis for air flow in this type of tube. The crisis phenomenon is related to the event when the longitudinal velocity at the nearwall vortex-circulation zone interface approaches the value of velocity for spreading centrifugal waves along this boundary. The paper presents and discusses the new detailed results in measuring the kinematic parameters of the crisis flow, including the parameter of velocity pulsation. The evidence of a hydraulic jump near the exit of the swirl flow to the tube working channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Kh. Pravdina, I.K. Kabardin, V.I. Polyakova, D.V. Kulikov, V.G. Meledin, V.A. Pavlov, M.R. Gordienko, and N.I. Yavorsky, Hydraulic flow instability in a Ranque tube, J. Appl. Mech. Techn. Phys., 2020, Vol. 61, P. 384–390.

    Article  ADS  Google Scholar 

  2. M.Kh. Pravdina, I.K. Kabardin, V.I. Polyakova, M.R. Gordienko, and N.I. Yavorsky, The crisis of flow and an inner source of heating in the vortex tube, J. Physics: Conf. Series, 2020, Vol. 1677, Iss. 1, P. 012027–1–012027–6.

    Google Scholar 

  3. M.Kh. Pravdina, I.K. Kabardin. V.I. Polyakova. M.R. Gordienko, and N.I. Yavorsky, Flow crisis and internal source for flow heating in a vortex tube, in Proc. Russian Conf. “XXXVI Siberian Thermophysical Workshop”, August 19–21, 2020, Novosibirsk, P. 71.

  4. G.J. Ranque, Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air,/Le J. de Physique et le Radium, 1933, Vol. 115, No. 4, P. 112–114.

    Google Scholar 

  5. R. Hilsch, The use of the expansion of gases in a centrifugal field as cooling process, Review of Sci. Instruments, 1947, Vol. 18, No. 2, P. 108–113.

    Article  ADS  Google Scholar 

  6. M.P. Vukalovich and I.I. Novikov, Technical Thermodynamics, Mashinostroenie, Moscow, 1968.

    Google Scholar 

  7. T.B. Benjamin, Theory of the vortex breakdown phenomenon, J. Fluid Mech., 1962, P. 593–629.

  8. M.A. Goldshtik, Vortex Flows, Nauka, Novosibirsk, 1981.

    Google Scholar 

  9. F.T. Kamenshchikov, V.A. Reshetov, A.N. Ryabov, V.K. Polyakov, and A.I. Emelyanov, Problems of Mechanics for Rotating Flows and Heat Transfer Improvement in Nuclear Plants, Energoatomizdat, Moscow, 1984.

    Google Scholar 

  10. M.A. Goldshtik, A.V. Lebedev, and M.Kh. Pravdina, Principle of maximum flow rate and aerodynamics of vortex chamber, Fluid Dynamics, 1989, No. 3, P. 49–55.

  11. M.C. Quick, The annular hydraulic jump, Civil Engng., 1961, Vol. 56, No. 662, P. 1176–1179.

    Google Scholar 

  12. T.B. Bendjamin and B.J.S. Barnard, A study of the motion of a cavity of a rotating liquid, J. Fluid Mech., 1964, Vol. 19, P. 193–209.

    Article  ADS  Google Scholar 

  13. Ch.-Sh. Yih, H.E. Cascoigne, and W.R. Dabler, Hydraulic jump in a rotating fluid, Phys. Fluids, 1964, Vol. 7, No. 5, P. 638–642.

    Article  ADS  Google Scholar 

  14. I.I. Novikov, V.I. Skobelkin, G.N. Abramovich, and L.A. Klyachko, Laws of liquid flow rate in a swirled flow (effect of maximum flow rate for swirled flow), Invention No. 389 recorded in the State Register of Inventions 18.10.1990 from application OT-11080 dated 27.02.1985, P. 1–10.

  15. V.A. Arbuzov, Yu.N. Dubnishchev, A.V. Lebedev, M.Kh. Pravdina, and N.I. Yavorski, Observation of large-scale hydrodynamic structures in a vortex tube and the Ranque effect, Techn. Phys. Lett., 1997, Vol. 23, Iss. 23, P. 938–940.

    Article  ADS  Google Scholar 

  16. Yu.N. Dubnishchev, V.G. Meledin, V.A. Pavlov, and N.I. Yavorsky, Study of flow structure and energy separation in vortex tube with square section, Thermophysics and Aeromechanics, 2003, Vol. 10, No.4, P. 567–578.

    Google Scholar 

  17. I.K. Kabardin, V.I. Polyakova, M.Kh. Pravdina, N.I. Yavorsky, and M.R. Gordienko, Regime analysis in Ranque tubes with circular and square working channels, J. Appl. Mech. Techn. Phys., 2020, Vol. 61, Iss. 1, P. 37–44.

    Article  ADS  Google Scholar 

  18. I.K. Kabardin, M.Kh. Pravdina, V.I. Polyakova, N.I. Yavorsky, V.A. Pavlov, and M.R. Gordienko, The subsonic velocity blocking effect for an aerodynamic vortex chamber, J. Physics: Conf. Series, 2018, Vol. 1105, Iss. 1, P. 012006–1–012006–6.

    Google Scholar 

  19. N.I. Yavorsky, V.G. Meledin, I.K. Kabardin, M.R. Gordienko, M.Kh. Pravdina, D.V. Kulikov, V.I. Polyakova, and V.A. Pavlov, Velocity field diagnostics inside the Ranque-Hilsh vortex tube with square cross section, AIP Conf. Proceedings, 2018, Vol. 2027, Iss. 1, P. 030122–1–030122–6.

    Article  Google Scholar 

  20. B. Ahlborn and S. Groves, Secondary flow in a vortex tube, Fluid Dyn. Res., 1997, Vol. 21, No. 2, P. 73–86.

    Article  ADS  Google Scholar 

  21. D.G. Akhmetov and T.D. Akhmetov, Flow structure and mechanism of heat transfer in a Ranque-Hilsch vortex tube, Experimental Thermal and Fluid Sci., 2020, Vol. 113, P. 110024–1–110024–9.

    Article  Google Scholar 

  22. I.K. Kabardin, V.G. Meledin, N.I. Yavorsky, V.A. Pavlov, M.Kh. Pravdina, D.V. Kulikov, and V.V. Rahmanov, Small disturbance diagnostic inside the vortex tube with a square cross section, Inter. Conf. on the Methods of Aerophysical Research (ICMAR 2016), AIR Conf. Proc., 2016, Vol. 1770, P. 030003–1–030003–9.

    Google Scholar 

  23. R. Trikker, Bora, Surf and Ship Waves, Gidrometeoizdat, Leningrad, 1969.

    Google Scholar 

  24. M.R. Gordienko, I.K. Kabardin, V.G. Meledin, A.K. Kabardin, M.Kh. Pravdina, V.V. Rahmanov, S.V. Kakaulin, V.A. Pavlov, and N.I. Yavorsky, Development of the method of laser Doppler anemometry for diagnostics of turbulent flows at high speed, J. Physics: Conf. Series, 2021, Vol. 2119, Iss. 1, P. 012110–1–012110–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Kabardin.

Additional information

The author appreciates the help in experimenting and results processing from M.Kh. Pravdina, V.G. Meledin, and M.R. Gordienko.

Research was supported by the Russian Science Foundation: Project RSF No. 22-29-01262.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabardin, I.K. LDA-based experimental study of flow crisis in the Ranque—Hilsch vortex tube. Thermophys. Aeromech. 29, 673–681 (2022). https://doi.org/10.1134/S0869864322050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864322050055

Keywords

Navigation