Skip to main content
Log in

Experimental investigation of instantaneous local flow separation in a turbulent boundary layer at various Reynolds numbers

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The effect of the Reynolds number on the mechanism of the formation of an instantaneous local flow separation that occurs in the near-wall region of a turbulent boundary layer is experimentally studied. The features of application of the high-speed planar PIV method with a high spatiotemporal resolution are discussed. Comparison of the measurement results obtained within a viscous sublayer of a turbulent boundary layer with the results of other studies showed the generality of the mechanism for the formation of an instantaneous local flow separation in the range of dynamic Reynolds number 207 ≤ Reτ ≤ 672.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Eckelmann, The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow, J. Fluid Mech., 1974, Vol. 65, No. 3, P. 439–459.

    Article  ADS  Google Scholar 

  2. K.J. Colella and W.L. Keith, Measurements and scaling of wall shear stress fluctuations, Exp. Fluids, 2003, Vol. 34, No. 2, P. 253–260.

    Article  Google Scholar 

  3. Z. Hu, C.L. Morfey, and N.D. Sandham, Wall pressure and shear stress spectra from direct simulations of channel flow, AIAA J., 2006, Vol. 44, No. 7, P. 1541–1549.

    Article  ADS  Google Scholar 

  4. P. Lenaers, Q. Li, G. Brethouwer, P. Schlatter, and R. Örlü, Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence, Phys. Fluids, 2012, Vol. 24, No. 3, P. 035110–1–035110–19.

    Article  ADS  Google Scholar 

  5. R.C. Chin, J.P. Monty, M.S. Chong, and I. Marusic, Conditionally averaged flow topology about a critical point pair in the skin friction field of pipe flows using direct numerical simulations, Phys. Rev. Fluids, 2018, Vol. 3, No. 11, P. 114607–1–114607–13.

    Article  ADS  Google Scholar 

  6. M. Bross, T. Fuchs, and C.J. Kähler, Interaction of coherent flow structures in adverse pressure gradient turbulent boundary layers, J. Fluid Mech., 2019, Vol. 873, P. 287–321.

    Article  ADS  MATH  Google Scholar 

  7. C.E. Willert, C. Cuvier, J.M. Foucaut, J. Klinner, M. Stanislas, J.P. Laval, S. Srinath, J. Soria, O. Amili, C. Atkinson, C.J. Kähler, S. Scharnowski, R. Hain, A. Schröder, R. Geisler, J. Agocs, and A. Röse, Experimental evidence of near-wall reverse flow events in a zero pressure gradient turbulent boundary layer, Exp. Therm. Fluid Sci., 2018, Vol. 91, P. 320–328.

    Article  Google Scholar 

  8. B. Guerrero, M.F. Lambert, and R.C. Chin, Extreme wall shear stress events in turbulent pipe flows: spatial characteristics of coherent motions, J. Fluid Mech., 2020, Vol. 904, P. A18–1–A18–39.

    Article  ADS  MATH  Google Scholar 

  9. D. Zaripov, V. Ivashchenko, R. Mullyadzhanov, R. Li, N. Mikheev, and C.J. Kähler, On a mechanism of near-wall reverse flow formation in a turbulent duct flow, J. Fluid Mech., 2021, Vol. 923, P. A20–1–A20–12.

    Article  ADS  MATH  Google Scholar 

  10. D. Zaripov, V. Ivashchenko, R. Mullyadzhanov, R. Li, D. Markovich, and C.J. Kähler, Reverse flow phenomenon in duct corners at a low Reynolds number, Phys. Fluids, 2021, Vol. 33, No. 8, P. 085130–1–085130–11.

    Article  ADS  Google Scholar 

  11. D.I. Zaripov, Problems of an experimental study of a reverse flow in the turbulent channel flow, J. Phys. Conf. Ser., 2021, Vol. 2057, No. 1, P. 012097–1–012097–5.

    Article  Google Scholar 

  12. M.S. Chong, J.P. Monty, C. Chin, and I. Marusic, The topology of skin friction and surface vorticity fields in wall-bounded flows, J. Turbul., 2012, Vol. 13, No. 13, P. N6–1–N6–10.

    Article  ADS  MATH  Google Scholar 

  13. J.I. Cardesa, J.P. Monty, J. Soria, and M.S. Chong, The structure and dynamics of backflow in turbulent channels, J. Fluid Mech., 2019, Vol. 880, P. R3–1–R3–11.

    Article  ADS  MATH  Google Scholar 

  14. C. Brücker, Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging, Phys. Fluids, 2015, Vol. 27, No. 3, P. 031705–1–031705–7.

    Article  ADS  Google Scholar 

  15. R. Vinuesa, R. Örlü, and P. Schlatter, Characterization of backflow events over a wing section, J. Turbul., 2017, Vol. 18, No. 2, P. 170–185.

    Article  ADS  Google Scholar 

  16. C. Diaz-Daniel, S. Laizet, and J.C. Vassilicos, Wall shear stress fluctuations: Mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer, Phys. Fluids, 2017, Vol. 29, No. 5, P. 055102–1–055102–14.

    Article  ADS  Google Scholar 

  17. Y.C. Yao, W.X. Huang, and C.X. Xu, Amplitude modulation and extreme events in turbulent channel flow, Acta Mech. Sin., 2018, Vol. 34, No. 1, P. 1–9.

    Article  ADS  Google Scholar 

  18. R. Jalalabadi and H.J. Sung, Influence of backflow on skin friction in turbulent pipe flow, Phys. Fluids, 2018, Vol. 30, No. 6, P. 065104–1–065104–9.

    Article  ADS  Google Scholar 

  19. C. Pan and Y. Kwon, Extremely high wall-shear stress events in a turbulent boundary layer, J. Phys. Conf. Ser., 2018, Vol. 1001, No. 1, P. 012004–1–012004–13.

    Article  Google Scholar 

  20. J.I. Cardesa, J.P. Monty, J. Soria, and M.S. Chong, Skin-friction critical points in wall-bounded flows, J. Phys. Conf. Ser., 2014, Vol. 506, No. 1, P. 012009–1–012009–15.

    Article  Google Scholar 

  21. D. Zaripov, R. Li, and N. Dushin, Dissipation rate estimation in the turbulent boundary layer using high-speed planar particle image velocimetry, Exp. Fluids, 2019, Vol. 60, No. 1, P. 18–1–18–16.

    Article  Google Scholar 

  22. M.P. Tokarev, D.M. Markovich, and A.V. Bilsky, Adaptive algorithms for PIV image processing, Computation Technologies, 2007, Vol. 12, No. 3, P. 109–131.

    MATH  Google Scholar 

  23. J.M. Wallace, Quadrant analysis in turbulence research: history and evolution, Annu. Rev. Fluid Mech., 2016, Vol. 48, No. 1, P. 131–158.

    Article  ADS  MATH  Google Scholar 

  24. S.K. Robinson, The kinematics of turbulent boundary layer structure, NASA Tech. Memo, 1991, No. 103859, P. 479.

  25. A.V. Boiko, G.R. Grek, A.V. Dovgal, and V.V. Kozlov, Formation of Turbulence in the Near-Wall Flows, Nauka, Novosibirsk, 1999.

    MATH  Google Scholar 

  26. C.R. Smith, J.D.A. Walker, A.H. Haidari, and U. Sobrun, On the dynamics of near-wall turbulence, Philos. Trans. R. Soc., London, Ser. A Phys. Eng. Sci., 1991, Vol. 336, No. 1641, P. 131–175.

    ADS  MATH  Google Scholar 

  27. R.J. Adrian, C.D. Meinhart, and C.D. Tomkins, Vortex organization in the outer region of the turbulent boundary layer, J. Fluid Mech., 2000, Vol. 422, P. 1–54.

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Zaripov.

Additional information

The study was supported by the grant of the Russian Science Foundation No. 22-29-01274.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaripov, D.I., Lukyanov, A.A. & Markovich, D.M. Experimental investigation of instantaneous local flow separation in a turbulent boundary layer at various Reynolds numbers. Thermophys. Aeromech. 29, 647–652 (2022). https://doi.org/10.1134/S086986432205002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086986432205002X

Keywords

Navigation