Skip to main content
Log in

Influence of contact thermal resistance of heat transfer efficiency in nanofluids based on particles with phase transition

  • Brief Communications
  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The study deals with unsteady heat transfer between a spherical encapsulated nanoparticle with a phase transition material as a core and the ambient medium. The calculations take into account the Kapitsa’s contact thermal resistance at the nanoparticle interface. It was demonstrated that this phenomenon can be critical for heat transfer in nanofluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. B. Zalba, J.M. Marín, L.F. Cabeza, and H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engng, 2003, Vol. 23, P. 251–283.

    Article  Google Scholar 

  2. A. Pasupathy, R. Velraj, and R.V. Seeniraj, Phase change material-based building architecture for thermal management in residential and commercial establishments, Renewable and Sustainable Energy Reviews, 2008, Vol. 12, No. 1, P. 39–64.

    Article  Google Scholar 

  3. A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 2009, Vol. 13, No. 1, P. 318–345.

    Article  Google Scholar 

  4. C.Y. Zhao and G.H. Zhang, Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications, Renewable and Sustainable Energy Reviews, 2011, Vol. 15, No. 8, P. 3813–3832.

    Article  Google Scholar 

  5. A. Waqas and Z. Ud Din, Phase change material (PCM) storage for free cooling of buildings — a review, Renewable and Sustainable Energy Reviews, 2013, Vol. 18(C), P. 607–625.

    Article  Google Scholar 

  6. W. Wu, H. Bostanci, L.C. Chow, Y. Hong, S.J. Ding, M. Su, and J.P. Kizito, Jet impingement heat transfer using air-laden nanoparticles with encapsulated phase change materials, ASME J. Heat Transfer, 2013, Vol. 135, No. 5, P. 052202–1–052202–8.

    Article  Google Scholar 

  7. D.A. Scott, A. Lampureux, and B.R. Baliga, Modeling and simulations of laminar mixed convection in a vertical pipe conveying slurries of a microencapsulated phase-change material in distilled water, ASME J. Heat Transfer, 2013, Vol. 135, No. 1, P. 011013–1–011013–13.

    Article  Google Scholar 

  8. P.L. Kapitsa, Study of mechanism of heat transfer in helium-II, Zhurnal Expreim. & Teoret. Fiziki, 1941, Vol. 11, No.1, P. 1–31.

    ADS  Google Scholar 

  9. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot, Nanoscale thermal transport, J. of Applied Physics, 2003, Vol. 93, No. 2, P. 793–818.

    Article  ADS  Google Scholar 

  10. M.A. Serebryakova, A.V. Zaikovskii, S.Z. Sakhapov, D.V. Smovzh, G.I. Sukhinin, and S.A. Novopashin, Thermal conductivity of nanofluids based on hollow γ-Al2O3 nanoparticles, and the influence of interfacial thermal resistance, Inter. J. of Heat and Mass Transfer, 2017, Vol. 108, Part B, P. 1314–1319.

    Article  Google Scholar 

  11. G.I. Sukhinin, M.A. Serebryakova, and S.A. Novopashin, Thermal conductivity of suspensions based on core-shell particles, ASME J. Heat Transfer, 2016, Vol. 138, No. 6, P. 064501–1–064501–4.

    Article  Google Scholar 

  12. S. A. Novopashin, M. A. Serebryakova, and G. I. Sukhinin, Effect of the kapitza temperature jump on thermal phenomena in nanofluids, JETP Letters, 2015, Vol. 102, Iss. 8, P. 518–519.

    Article  ADS  Google Scholar 

  13. A.A. Samarskii, An Introduction to Numerical Methods, Nauka, Moscow, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Novopashin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mescheryakova, L.F., Novopashin, S.A. Influence of contact thermal resistance of heat transfer efficiency in nanofluids based on particles with phase transition. Thermophys. Aeromech. 28, 761–764 (2021). https://doi.org/10.1134/S086986432105019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086986432105019X

Keywords

Navigation