Turbulent transport in a swirling jet with vortex core breakdown. PIV/PLIF-measurement and numerical simulation


Paper reports on optical diagnostics and numerical simulation of the flow structure and transport of a passive scalar in a turbulent swirling jet with vortex core breakdown. Based on the measurements of the instantaneous velocity and concentration fields by PIV and PLIF techniques, the Reynolds stresses and Reynolds fluxes are evaluated and compared to those obtained from URANS and LES simulations. Based on the experimental data and LES-simulation results, the local convective and turbulent transport of the passive scalar are analyzed.

This is a preview of subscription content, log in to check access.


  1. 1.

    A.K. Gupta, D.G. Lilley, and N. Syred, Swirl flows. England, Tunbridge Wales, Kent: Abacus Press, 1984.

    Google Scholar 

  2. 2.

    R. Weber and J. Dugué, Combustion accelerated swirling flows in high confinements, Progress in Energy and Combustion Sci., 1992, Vol. 18, No. 4, P. 349–367.

    ADS  Article  Google Scholar 

  3. 3.

    A.I. Mikhaylov, G.M. Gorbunov, V.V. Borisov, L.A. Kvasnikov, and N.I. Markov, Rabochiy Protsess i Raschet Kamer Sgoraniya Gazoturbinnykh Dvigateley [Workflow and Calculation of Gas Turbine Engine Combustors], Defence Industry Publ., Moscow, 1959.

    Google Scholar 

  4. 4.

    C.P. Zemtsop, M.K. Stöllinger, S.D. Heinz, and D. Stanescu, Large-eddy simulation of swirling turbulent jet flows in absence of vortex breakdown, AIAA J., 2009, Vol. 47, No. 12, P. 3011–3021.

    ADS  Article  Google Scholar 

  5. 5.

    F. Cozzi, A. Coghe, and R. Sharma, Analysis of local entrainment rate in the initial region of isothermal free swirling jets by stereo PIV, Experimental Thermal and Fluid Sci., 2018, Vol. 94, P. 281–294.

    Article  Google Scholar 

  6. 6.

    J. Fröhlich, M. García-Villalba, and W. Rodi, Scalar mixing and large-scale coherent structures in a turbulent swirling jet, Flow, Turbulence and Combustion, 2008, Vol. 80, No. 1, P. 47–59.

    Article  MATH  Google Scholar 

  7. 7.

    S.V. Alekseenko, V.M. Dulin, Yu.S. Kozorezov, D.M. Markovich, S.I. Shtork, and M.P. Tokarev, Flow structure of swirling turbulent propane flames, Flow, Turbulence and Combustion, 2011, Vol. 87, No. 4, P. 569–595.

    Article  MATH  Google Scholar 

  8. 8.

    M.R. Ruith, P. Chen, E. Meiburg, and T. Maxworthy, Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation, J. Fluid Mech., 2003, Vol. 486, P. 331–378.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    K. Oberleithner, C.O. Paschereit, R. Seele, and I. Wygnanski, Formation of turbulent vortex breakdown: intermittency, criticality, and global instability, AIAA J., 2012, Vol. 50, No. 7, P. 1437–1452.

    ADS  Article  Google Scholar 

  10. 10.

    O. Lucca-Negro and T. O’Doherty, Vortex breakdown: a review, Progress in Energy and Combustion Sci., 2001, Vol. 27, No. 4, P. 431–481.

    Article  Google Scholar 

  11. 11.

    H. Liang and T. Maxworthy, An experimental investigation of swirling jets, J. Fluid Mech., 2005, Vol. 525, P. 115–159.

    ADS  Article  MATH  Google Scholar 

  12. 12.

    Billant, J.M. Chomaz, and P. Huerre, Experimental study of vortex breakdown in swirling jets, J. Fluid Mech., 1998, Vol. 376, P. 183–219.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    T. Loiseleux and J.M. Chomaz, Breaking of rotational symmetry in a swirling jet experiment, Phys. Fluids, 2003, Vol. 15, No. 2, P. 511–523.

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    S.I. Shtork, O. Comas, E.C. Fernandes, and M.V. Heitor, Aerodynamic structure of unsteady swirling flow downstream of a sudden expansion, Thermophysics and Aeromechanics, 2005, Vol. 12, No. 2, P. 217–228.

    Google Scholar 

  15. 15.

    I.V. Litvinov, D.K. Sharaborin, and S.I. Shtork, Finding of parameters of helical symmetry for unsteady vortex flow based on phase-averaged PIV measurement data, Thermophysics and Aeromechanics, 2015, Vol. 22, No. 5, P. 647–650.

    ADS  Article  Google Scholar 

  16. 16.

    W.C. Reynolds, J.J. Alonso, and M. Fatica, Aircraft gas turbine engine simulations, in: 16th AIAA Computational Fluid Dynamics Conference, 2003, P. 1–17.

  17. 17.

    D.G. Lilley and N.A. Chigier, Nonisotropic turbulent stress distribution in swirling flows from mean value distributions, Int. J. Heat and Mass Transfer, 1971, Vol. 14, No. 4, P. 573–585.

    Article  Google Scholar 

  18. 18.

    R.B. Akhmedov, T.B. Balagula, F.K. Rashidov, and A. Yu. Sakaev, Aerodinamika Zakruchennoi Strui [Aerodynamics of Swirling Jet], Energy Publ., Moscow, 1977.

    Google Scholar 

  19. 19.

    S.Yu. Krasheninnikov, Investigation of a submerged air jet during high-intensity swirling, Fluid Dyn., 1971, Vol. 6, No. 6, P. 1039–1045.

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    D. Mourtazin and J. Cohen, The effect of buoyancy on vortex breakdown in a swirling jet, J. Fluid Mech., 2007, Vol. 571, P. 177–189.

    ADS  Article  MATH  Google Scholar 

  21. 21.

    S. Komori and H. Ueda, Turbulent flow structure in the near field of a swirling round free jet, Phys. Fluids, 1985, Vol. 28, No. 7, P. 2075–2082.

    ADS  Article  Google Scholar 

  22. 22.

    S.V. Alekseenko, A.V. Bilsky, V.M. Dulin, and D.M. Markovich, Experimental study of an impinging jet with different swirl rates, Int. J. Heat and Fluid Flow, 2007, Vol. 28, No. 6, P. 1340–1359.

    Article  Google Scholar 

  23. 23.

    S.V. Alekseenko, V.M. Dulin, Yu.S. Kozorezov, and D.M. Markovich, Effect of axisymmetric forcing on the structure of a swirling turbulent jet, Int. J. Heat and Fluid Flow, 2008, Vol. 29, No. 6, P. 1699–1715.

    Article  Google Scholar 

  24. 24.

    S.V. Alekseenko, V.M. Dulin, Yu.S. Kozorezov, and D.M. Markovich, Effect of high-amplitude forcing on turbulent combustion intensity and vortex core precession in a strongly swirling lifted propane/air flame, Combustion Sci. and Technology, 2012, Vol. 184, No. 10–11, P. 1862–1890.

    Article  Google Scholar 

  25. 25.

    L.K. Su, Measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets, Center for Turbulence Research Annual Briefs, 1998, P. 35–46.

  26. 26.

    G.-H. Wang, N.T. Clemens, R.S. Barlow, and P.L. Varghese, A system model for assessing scalar dissipation measurement accuracy in turbulent flows, Measurement Sci. and Technology, 2007, Vol. 18, No. 5, P. 1287–1303.

    ADS  Article  Google Scholar 

  27. 27.

    R. Örlü and P.H. Alfredsson, An experimental study of the near-field mixing characteristics of a swirling jet, Flow, Turbulence and Combustion, 2008, Vol. 80, No. 3, P. 323–350.

    Article  Google Scholar 

  28. 28.

    N. Syred and J.M. Beer, Combustion in swirling flows: a review, Combustion and Flame, 1974, Vol. 23, No. 2, P. 143–201.

    Article  Google Scholar 

  29. 29.

    P.M. Anacleto, E.C. Fernandes, M.V. Heitor, and S.I. Shtork, Swirl flow structure and flame characteristics in a model lean premixed combustor, Combustion Sci. and Technology, 2003, Vol. 175, No. 8, P. 1369–1388.

    Article  Google Scholar 

  30. 30.

    E.C. Fernandes, M.V. Heitor, and S.I. Shtork, An analysis of unsteady highly turbulent swirling flow in a model vortex combustor, Experiments in Fluids, 2006, Vol. 40, No. 2, P. 177–187.

    ADS  Article  Google Scholar 

  31. 31.

    D.M. Markovich and M.P. Tokarev, Algorithms of reconstruction of three component velocity field in the Stereo PIV method, Vychisl. Metody i Programmirovanie, 2008, Vol. 9, No. 3, P. 311–326.

    Google Scholar 

  32. 32.

    F. Picano and K. Hanjalić, Leray-α regularization of the Smagorinsky-closed filtered equations for turbulent jets at high Reynolds numbers, Flow, Turbulence and Combustion, 2012, Vol. 89, No. 4, P. 627–650.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. S. Lobasov.

Additional information

The work was financially supported by the Russian Science Foundation (Grant No. 16-19-10566).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lobasov, A.S., Dulin, V.M., Dekterev, A.A. et al. Turbulent transport in a swirling jet with vortex core breakdown. PIV/PLIF-measurement and numerical simulation. Thermophys. Aeromech. 26, 351–359 (2019). https://doi.org/10.1134/S0869864319030041

Download citation


  • swirling turbulent jet
  • vortex breakdown
  • turbulent transport
  • optical methods for flow diagnostics
  • CFD simulation of turbulent flow