Skip to main content
Log in

Simulation of production of hollow silica particles in a plasma flow. Part 1. Dynamics of motion and heating of porous particles

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The paper presents simulation results for the dynamics of motion, heating, and melting of porous silica particles by electro-plasma technology during production of hollow silica microspheres. With the use of available analytical and numerical solutions of equations of motion and energy for particle flow, we analyze the laws of evolution of particle parameters in the plasma flow for the case of particle diameter varying in the range D = (250–350) µm and for porosity in the range P = (0–0.6).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I.P. Gulyaev, Peculiarities of production and treatment of hollow particles of zirconium dioxide in plasma flow, Vestnik Yugorskogo Universiteta, 2009, Vol. 13, No. 2, P. 10–22.

    Google Scholar 

  2. I.P. Gulyaev and O.P. Solonenko, Modeling of the behavior of hollow ZrO2 particles in plasma jet with regard to their thermal expansion, Thermophysics and Aeromechanics, 2013, Vol. 20, No. 6, P. 769–782.

    Article  ADS  Google Scholar 

  3. I.P. Gulyaev, Treatment of hollow powders in a chamber with variable pressure, Vestnik Yugorskogo Universiteta, 2013, Vol. 29, No. 2, P. 23–30.

    Google Scholar 

  4. Patent RU2555994, IPC 51 C03 B19/10. Method of producing hollow ceramic microspheres with calculated parameters, Inventor I.P. Gulyaev, Proprietor: ITAM SB RAS, Application 2014107508/03; filed 27.12.2014; date of publishing 10.07.2015, Bull. 19.

    Google Scholar 

  5. Patent RU2503628, IPC 51 C03 B37/04. Plasma device for obtaining refractory silicate melt, Inventors: Volokitin O.G., Timonov E.V, Nikiforov A.A., Chirikov V.K..; Proprietors: Volokitin O.G., Timonov E.V, Nikiforov A.A., Chirikov V.K.., Application 2012126227/03; filed 22.06.2012; published 10.01.2014, Bull. 1.

    Google Scholar 

  6. V.V. Shekhovtsov, V.A. Vlasov, G.G. Volokitin, and O.G. Volokitin, Izv. Vyssh. Uchebn. Zaved., Fizika, 2016, Vol. 59, No. 9-3, P. 305–308.

    Google Scholar 

  7. V.A. Vlasov, O.G. Volokitin, G.G. Volokitin, N.K. Skripnikova, V.V. Shekhovtsov, Calculation of the melting process of a quartz particle under low-temperature plasma conditions, Journal of Engineering Physics and Thermophysics, 2016, Vol. 89, No. 1, P. 152–156.

    Article  ADS  Google Scholar 

  8. A.S. Zhukov, V.A. Arkhipov, S.S. Bondarchuk, and V.D. Gol’din, Evaluation of the morphology of particles produced by plasma-chemical synthesis of ceramic powders, Russian Journal of Physical Chemistry B, 2013, Vol. 7, No. 6, P. 777–782.

    Article  Google Scholar 

  9. N.B. Vargaftik, Handbook of Physical Properties of Liquids and Gases, Hemisphere Pub. Corp., Washington, 1983.

    Google Scholar 

  10. V.A. Arkhipov and A.S. Usanina, Motion of Disperse Phase Particles in the Carrier Medium: Manual. Publ. Tomsk State University, Tomsk, 2014.

    Google Scholar 

  11. M.A. Ryss, Ferroalloy Production, Metallurgia, Moscow, 1985, P. 45–46.

    Google Scholar 

  12. A.V. Lykov, Heat and Mass Transfer. Handbook. Energia, Moscow), 1978.

    Google Scholar 

  13. M. Wang and N. Pan, Predictions of effective physical properties of complex multiphase materials, Materials Sci. Engng R, 2008, Vol. 63, P. 1–30.

    Article  Google Scholar 

  14. Physical Parameters. Handbook, I.S. Grigoriev and E.Z. Meilikhov (Eds.), Energoatomizdat, Moscow, 1991.

    Google Scholar 

  15. B.S. Hemingway, Quartz: heat capacities from 340 to 1000 K and revised values for the thermodynamics properties, American Mineralogist, 1987, Vol. 72, P. 273–279.

    Google Scholar 

  16. I.T. Goronovskii, Yu.P. Nazarenko, and E.F. Nekryach, Concise Handbook on Chemistry, Naukova Dumka, Kiev, 1974.

    Google Scholar 

  17. Physical and Chemical Properties of Oxides. Handbook, G.V. Samsonov (Ed.), Metallurgia, Moscow, 1969.

    Google Scholar 

  18. A.V. Chirihin, Flow of Condensing and Dusty Media in Wind Tunnels, Fizmatgiz, Moscow, 2011.

    Google Scholar 

  19. I.M. Vasenin, V.A. Akkhipov, V.G. Butov, A.A. Glazunov, and V.F. Trofimov, Gas Dynamics for Two-Phase Flows in Nozzles, Publ. Tomsk University, Tomsk, 1986.

    Google Scholar 

  20. A.V. Lykov, Thermal Conductivity Theory. Manual. Vyschaya Shkola, Moscow, 1967.

    Google Scholar 

  21. E. Pfender and Y.C. Lee, Particle dynamics and particle heat and mass transfer in thermal plasmas. P. I. The motion of a single particle without thermal effects, Plasma Chemistry and Plasma Processing, 1985, Vol. 5, No. 3, P. 211–237.

    Article  Google Scholar 

  22. G.N. Abramovich, Applied Gas Dynamics, Nauka, Moscow, 1969.

    Google Scholar 

  23. A.A. Shraiber, Multiphase polydisperse flows with variable fraction composition of solid inclusions, Reports in Science and Technology. Complex and Special Branches of Mechanics. VINITI, Moscow, 1988, Vol. 3, P. 3–80.

    Google Scholar 

  24. L.E. Sternin and A.A. Shraiber, Gas-Particle Multiphase Flows, Mashinostroenie, Moscow, 1994.

    Google Scholar 

  25. G.I. Kelbaliev, Drag coefficients of variously shaped solid particles, droplets, and bubbles, Theoretical Foundations of Chemical Engineering, 2011, Vol. 45, No. 3, P. 248–266.

    Article  Google Scholar 

  26. Y.C. Lee, Y.P. Chyou, and E. Pfender, Particle dynamics and particle heat and mass transfer in thermal plasmas. P. II. Particle heat and mass transfer in thermal plasmas, Plasma Chemistry and Plasma Processing, 1985, Vol. 5, No. 4, P. 391–414.

    Article  Google Scholar 

  27. G.F. Knorre, K.M. Arefyev, A.G. Blokh, E.A. Nakhapetyan, I.I. Paleev, and V.B. Shteinberg, Theory of Furnace Processes, Energia, Moscow-Leningrad, 1966.

    Google Scholar 

  28. V.V. Pomerntsev, K.M. Arefyev, D.B. Akhmedov, M.N. Konovich, Yu.N. Korchunov, Yu.A. Rundygin, S.L. Shagalova, and S.M. Shestakov V.V. Pomerntsev, K.M. Arefyev, D.B. Akhmedov, M.N. Konovich, Yu.N. Korchunov, Yu.A. Rundygin, S.L. Shagalova, and S.M. Shestakov V.V. Pomerntsev, K.M. Arefyev, D.B. Akhmedov, M.N. Konovich, Yu.N. Korchunov, Yu.A. Rundygin, S.L. Shagalova, and S.M. Shestakov V.V. Pomerntsev, K.M. Arefyev, D.B. Akhmedov, M.N. Konovich, Yu.N. Korchunov, Yu.A. Rundygin, S.L. Shagalova, and S.M. Shestakov, Foundations of Practical Theory of Combustion, Energoatomizdat, Leningrad, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Arkhipov or V. V. Shekhovtsov.

Additional information

Research was performed with financial support of the Program for TSU competitive position (Project # 8.2.13.2018), Presidential grant (MD-553.2018.8), and the Presidential scholarship (SP-313.2018.1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, V.A., Bondarchuk, S.S., Shekhovtsov, V.V. et al. Simulation of production of hollow silica particles in a plasma flow. Part 1. Dynamics of motion and heating of porous particles. Thermophys. Aeromech. 26, 139–152 (2019). https://doi.org/10.1134/S0869864319010141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864319010141

Keywords

Navigation