Skip to main content
Log in

The influence of radiative-convective heat transfer on ignition of the drops of coal-water fuel

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

Simulation results are presented for thermal treatment and ignition of coal-water fuel drops under conditions of radiative-convective heating. The data demonstrate reasonbble compliance between theory and experiment for the integral parameter of ignition process — the delay time of ignition. The radiative component of heat transfer is significant for parameters and conditions of ignition. The increase in the fuel particle size makes this influence bigger. Prognostic potential was evaluated for differnet models of radiative heat tarnsfer. The delay time of ignition obtained from radiative heat transfer model “grey wall” is in good agreement with experimental data. Meanwhile, the method based on radiation diffusion approximation gives the simulation data for delay time much higher than experimental data. It is confirmed that while the process of inflammation of a coal-water particle, the key impotance belongs not to fuel-oxidizer reactions, but rather to a chain of heat treatment events, such as radiative-convective heating, water evaporation, and thermal decomposition of fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.F. Kustov, Fuel Suspensions, Publishing House of the USSR Academy of Sciences, Moscow, 1942.

    Google Scholar 

  2. G.S. Khodakov, E.G. Gorlov, and G.S. Golovin, Suspended coal fuel, Chemistry of Solid Fuel, 2005, no. 6, p. 15–32.

    Google Scholar 

  3. V.I. Murko, Water–coal fuel as a real alternative to liquid and gaseous nonrenewable fuels, TEK Resursy Kuz–bassa, 2001, no. 4, p. 30–33.

    Google Scholar 

  4. A.A. Krut, Coal–water fuel as alternative to natural gas and liquid hydrocarbons, Geotekhnicheskaya Mehanika, 2009, no. 83, p. 269–274.

    Google Scholar 

  5. A. Wang and B. Lin, Assessing CO2 emissions in China's commercial sector: determinants and reduction strategies, J. Cleaner Product, 2017, no. 164, p. 1542–1552.

    Article  Google Scholar 

  6. V.V. Salomatov, The state and prospects of coal and nuclear power generation in Russia (review), Thermophysics and Aeromechanics, 2009, vol. 16, no. 4, p. 501–513.

    Article  ADS  Google Scholar 

  7. B.G. Miller and D.A. Tillman, Chapter 2. Coal characteristics, in Combustion engng issues for solid fuel sys–tems, 2008, P. 33–81.

    Google Scholar 

  8. H. Hao, Z. Liu, F. Zhao, J. Du, and Y. Chen, Coal–derived alternative fuels for vehicle use in China: a review, J. Cleaner Production, 2017, vol. 141, p. 774–790.

    Article  Google Scholar 

  9. M. Bailera, S. Espatolero, and P.L.M. Lisbona, Romeo power to gas–electrochemical industry hybrid systems: a case study, Applied Energy, 2017, vol. 202, p. 435–446.

    Article  Google Scholar 

  10. A. Kijo–Kleczkowska, Combustion of coal–water suspensions, Fuel, 2011, vol. 90, p. 865–877.

    Article  Google Scholar 

  11. W. Gajewski, A. Kijo–Kleczkowska, and J. Leszczyn, Analysis of cyclic combustion of solid fuels, Fuel, 2009, vol. 88, p. 221–234.

    Article  Google Scholar 

  12. Z. Huang, C. Qin, and G. Gao, Theoretical analysis on CWM drop combustion history, in: Proc. 8th Int. Symp. Coal Slurry Fuels Preparation and Utilization, Part 1, USA, Orlando, 1986, P. 343–358.

    Google Scholar 

  13. K.J. Matthews and A.R. Jones, The effect of coal composition on coal–water slurry combustion and ash deposition characteristics, in: Proc. 8th Int. Symp. Coal Slurry Fuels Preparation and Utilization. Part 1. USA, Orlando, 1986, P. 388–407.

    Google Scholar 

  14. V.V. Salomatov, S.V. Syrodoy, and N.Y. Gutareva, Modelling of heat and mass transfer to solve the problem of particle ignition water–coal fuel, IOP Conf. Series: Materials Sci. and Engng, 2014, vol. 66, p. 012040–1–012040–7.

    Article  Google Scholar 

  15. V.V. Salomatov and I.V. Kravchenko, Тheory of combustion of coal–water fuel drop, in: Proc. 8th Russian Conf. Solid Fuel Combustion, Novosibirsk, November 10–13, 2009, Part 3, Institute of Thermophysics SB RAS, Novosibirsk, 2009, P. 213–227.

    Google Scholar 

  16. G.V. Kuznetsov, V.V. Salomatov, and S.V. Syrodoy, Numerical simulation of ignition of particles of a coal–water fule, Combustion, Explosion and Shock Waves, 2015, Vol. 51, No.4, P. 409–415.

    Google Scholar 

  17. V.V. Salomatov, S.V. Syrodoy, and G.V. Kuznetsov, Heat and mass transfer in a coal–water fuel particle at the stage of “thermal” treatment, Thermophysics and Aeromechanics, 2016, vol. 23, no. 4, p. 603–612.

    Article  ADS  Google Scholar 

  18. S.V. Syrodoi, G.V. Kuznetsov, and V.V. Salomatov, Effect of the shape of particles on the characteristics of the coal–watewr fuel, Solid Fuel Chemistry, 2015, vol. 3, no. 6, p. 365–371.

    Article  Google Scholar 

  19. V.V. Salomatov, S.V. Syrodoy, and N.Yu. Gutareva, Concentration organic components in the hydrocarbon fuel particles conditions and characteristic of ignition, EPJ Web of Conferences, 2014, Vol. 76, No. 01018–1–01018–6.

  20. S.V. Syrodoy, G.V. Kuznetsov, A.V. Zhakharevicha, N.Yu. Gutareva, and V.V. Salomatov, The influence of the structure heterogeneity on the characteristics and conditions of the coal–water fuel particles ignition in high temperature environment, Combustion and Flame, 2017, vol. 80, p. 196–206.

    Article  Google Scholar 

  21. D.A. Frank–Kamenetsky, Diffusion and Heat Transfer in Chemcial Kinetics, Publ. AS USSR, Moscow–Leningrad, 1947.

    Google Scholar 

  22. D.B. Spalding, Some Fundamentals of Combustion, Butterworths, London, 1955.

    Google Scholar 

  23. K.Y. Ahn, S.W. Bbaek, and C.E. Choi, Investigation of a coal–water slurry droplet exposed to hot gas stream, Combustion Sci. and Technology, 1994, Vol. 97, No. 4–6, P. 429–447.

    Google Scholar 

  24. N.A. Fuks, Evaporation and growth of droplest in gaseous medium, AS USSR Publ., Moscow, 1958.

    Google Scholar 

  25. A.P. Burdukov, V.I. Popov, V.G. Tomilov, and V.D. Fedosenko, The rheodynamics and combustion of coal–water mixtures, Fuel, 2002, vol. 81, no. 7, p. 927–933.

    Article  Google Scholar 

  26. R.J. Pressley, Handbook of Lasers, Cleveland, OH: CRC Press, 1971.

    Google Scholar 

  27. N.A. Rubtsov, Radiative Heat Transfer in Solid Media, Nauka, Novosibirsk, 1984.

    Google Scholar 

  28. L.N. Khitrin, Physics of Combustion and Explosion, National Science Foundation, 1962.

    Google Scholar 

  29. H.O. Garces, L. Arias, A.J. Rojas, C. Carrasco, A. Fuentes, and O. Farias, Radiation measurement based on spectral emissions in industrial flames, Measurement, 2016, vol. 87, p. 62–73.

    Article  Google Scholar 

  30. B. Mayr, R. Prieler, M. Demuth, and C. Hochenauer, Comparison between solid body and gas radiation in high temperature furnaces under different oxygen enrichments, Applied Thermal Engng., 2017, no. 127, p. 679–688.

    Article  Google Scholar 

  31. Ch. Yin, On gas and particle radiation in pulverized fuel combustion furnaces, Applied Energy, 2015, vol. 157, p. 554–561.

    Article  Google Scholar 

  32. X. Wena, H. Wang, Yu. Luo, K. Luo, and J. Fan, Numerical investigation of the effects of volatile matter composition and chemical reaction mechanism on pulverized coal combustion characteristics, Fuel, 2017, vol. 210, p. 695–704.

    Article  Google Scholar 

  33. I.I. Danilyuk, On the Stefan problem, Russian Mathematical Surveys, 1985, vol. 40, no. 5, p. 157–223.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. A.A. Khaschenko, O.V. Vecher, and E.I. Diskaeva, Study of temperature dependency of the liquid evaporation rate from free surface and liquid boiling rate on the solid heating surface, Izvestia AltGU, 2016, vol. 89, no. 1, p. 84–87.

    Google Scholar 

  35. Y. Chen, K. Aanjaneya, and A. Atreya, A study to investigate pyrolysis of wood particles of various shapes and sizes, Fire Safety J., 2017, vol. 91, p. 820–827.

    Article  Google Scholar 

  36. G.N. Abramovich, Theory of Turbulent Jets, Fizmatgiz, Moscow, 1960.

    Google Scholar 

  37. K. Enkhjargal and V.V. Salomatov, Mathematical modeling of the heat treatment and combustion of a coal particle. V. Burn–up stage, J. Engng Phys. Thermophys., 2011, vol. 84, no. 4, p. 836–841.

    Google Scholar 

  38. V.I. Maksimov and T.A. Nagornova, Influence of heatsink from upper boundary on the industrial premises thermal conditions at gas infrared emitter operation, EPJ Web of Conferences, 2014, vol. 76, p. 01006–1–01006–5.

    Article  Google Scholar 

  39. M. Planck, The Theory of Heat Radiation. N.Y.: Dover Publications, 1959.

    MATH  Google Scholar 

  40. B.H. Armstrong, J. Sokoloff, R.W. Nicholis, D.H. Holland, and R.E. Meyerott, Radiative properties of high temperature air, J. Quantitative. Spectroscopy and Radiative Transfer, 1961, Vol. 1, Iss. 2, P. 143–162.

    Article  ADS  Google Scholar 

  41. B.H. Armstrong and R.E. Meyerott, Mean absorption coefficient of air, nitrogen and oxygen from 22000 to 220000, Lockheed Missiles and Space Division, Rept № LMSD 49759, Palo Alto, Calif 1959, 13 p.

    Google Scholar 

  42. M.N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection, John Wiley & Sons, New York, 1973.

    Google Scholar 

  43. R.E. Meyerott, J. Sokoloff, and R.W. Nicholls, Absorptions Coefficient of Air, Bedford, Mass.: Air Force Cam–bridge Research Center, Geophysics research paper No. 68, 1960, P. 143–162.

    Book  Google Scholar 

  44. R. Siegel and J. Howell, Thermal Radiation Heat Transfer, Taylor & Fransis, NY–London.

  45. V.I. Babiy and Yu.F. Kuvaev, Combustion of coal dust and calculation of coal dust flame, Energoatomizdat, Moscow, 1986.

    Google Scholar 

  46. A.A. Agroskin and B.V. Gleibman, Thermophysics of Solid Fuel, Nedra, Moscow, 1980.

    Google Scholar 

  47. V.G. Lipovich, Coal Chemistry and Processing, Khimia, Moscow, 1988.

    Google Scholar 

  48. V.V. Pomerantsev, Foundations of Practical Theory of Combustion, Energoatomizdat, Leningrad, 1986.

    Google Scholar 

  49. H. Watanabe and M. Otaka, Numerical simulation of coal gasification in entrained flow coal gasifier, Fuel, 2006, vol. 85, p. 1935–1943.

    Article  Google Scholar 

  50. J. Mantzaras, Catalytic combustion of syngas, Combust. Sci. Technol., 2008, vol. 180, no. 6, p. 1137–1168.

    Article  Google Scholar 

  51. W.C. Jian, J. Wen, S. Lu, and J. Guo, Single–step chemistry model and transport coefficient model for hydrogen combustion, Science China. Technological Sciences, 2012, vol. 55, p. 2163–2168.

    Article  Google Scholar 

  52. X. Zhang, T. Wang, J. Xu, S. Zheng, and X. Hou, Study on flame–vortex interaction in a spark ignition engine fueled with methane/carbon dioxide gases, J. Energy Institute. 2018. Vol. 91, Iss. 1. P. 133–144.

    Article  Google Scholar 

  53. P.J. Roache, Computational fluid dynamics. Albuquerque: Hermosa Publishers, 1976.

    MATH  Google Scholar 

  54. A.A. Samarskii, Schemes of high–order accuracy for the multi–dimensional heat conduction equation, Zh. Vychisl. Mat. Mat. Fiz., 1963. Vol. 3, No. 5. P. 812–840.

    MathSciNet  Google Scholar 

  55. A.A. Samarskii and B.D. Moiseenko, An economic continuous calculation scheme for the Stefan multidimen–sional problem, Zh. Vychisl. Mat. Mat. Fiz., 1965, vol. 5, no. 5, p. 816–827.

    Google Scholar 

  56. D.A. Frank–Kamenetskii, On diffusion theory of heterogeneous reactions, Zh. Physicheskoi Khimii, 1939, vol. 13, no. 6, p. 756–758.

    Google Scholar 

  57. O.M. Todes, Theory of heat explosion. I. Heat explosion with “zero” order reaction, Zh. Physicheskoi Khimii, 1939, vol. 13, no. 7, p. 868–879.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Syrodoy.

Additional information

Research was financially supported by Presidential grant (Project NSh-7538-2016.8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrodoy, S.V. The influence of radiative-convective heat transfer on ignition of the drops of coal-water fuel. Thermophys. Aeromech. 25, 429–443 (2018). https://doi.org/10.1134/S0869864318030101

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864318030101

Key words

Navigation