Skip to main content
Log in

The role of laboratory testing in the development of rotor aerodynamics (review)

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The aim of the review is to assess the value of model experimental studies for the development of classical rotor aerodynamics as well as to describe the most significant recent results stimulated by intense development of wind power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.V. Alekseenko, P.A. Kuibin, and V.L. Okulov, 2007, Theory of Concentrated Vortices: an Introduction, Springer-Verlag, Berlin-Heidelberg.

    MATH  Google Scholar 

  • P. Bachant and M. Wosnik, 2015, Characterising the near-wake of a cross-flow turbine, J. Turbulence, Vol. 16, No. 4, P. 392–410.

    Article  ADS  Google Scholar 

  • R.J. Barthelmie, K. Hansen, S.T. Frandsen, O. Rathmann, J.G. Schepers, W. Schlez, J. Phillips, K. Rados, A. Zervos, E.S. Politis, and P.K. Chaviaropoulos, 2009, Modeling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, Vol. 12, No. 5, P. 431–444.

    Article  ADS  Google Scholar 

  • J. Bartl, F. Pierella, and L. Sætran, 2012, Wake measurements behind an array of two model wind turbines, Energy Procedia, Vol. 24, P. 305–312.

    Article  Google Scholar 

  • M. Bastankhan and F. Porté-Agel, 2014, A new analytical model for wind turbine wakes, Renewable Energy, Vol. 70, P. 116–123.

    Article  Google Scholar 

  • M. Bastankhan and F. Porté-Agel, 2016, Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., Vol. 806, P. 506–541.

    Article  ADS  MATH  Google Scholar 

  • A. Betz, 1919, Schraubenpropeller mit geringstem Energieverlust: mit einem Zusatz von L. Prandtl, Göttinger Nachrichten 196, bis 217, Göttingen.

    Google Scholar 

  • L.P. Chamorro, C. Hill, S. Morton, C. Ellis, R.E.A. Arndt, and F. Sotiropoulos, 2013, On the interaction between a turbulent open channel flow and an axial-flow turbine, J. Fluid Mech., Vol. 716, P. 658–670.

    Article  ADS  MATH  Google Scholar 

  • G.V. Ermolenko, I.G. Gordeev, A.V. Nikomarova, M.A. Ryzhenkov, and V.N. Tskhomariya, 2012, Pilot projects of network wind power in the Eisk region of Krasnodar krai: The state and prospects, Thermal Engng, Vol. 59, No. 11, P. 846–853.

    Article  ADS  Google Scholar 

  • N.P. Dufresne and M. Wosnik, 2013, Velocity deficit and swirl in the turbulent wake of a wind turbine, J. Marine Technology Society, Vol. 47, No. 4, P. 193–205.

    Article  Google Scholar 

  • M. Felli, R. Camussi, and F. Di Felice, 2011, Mechanisms of evolution of the propeller wake in the transition and far fields, J. Fluid Mech., Vol. 682, P. 5–53.

    Article  ADS  MATH  Google Scholar 

  • O.A.H. Flamm, Die Schiffschraube und ihre Wirkung auf das Wasser, Berlin, 1909.

    Google Scholar 

  • V.E. Fortov and O.S. Popel’, 2014, The current status of the development of renewable energy sources worldwide and in Russia, Thermal Engng, Vol. 61, No. 6, P. 389–398.

    Article  ADS  Google Scholar 

  • P. Fraunie, C. Beguier, I. Paraschivoiu, and G. Brochier, Water channel experiments of dynamic stall on Darrieus wind turbine blades, J. Propulsion and Power, 1986, Vol. 2, No. 5, P. 445–449.

    Article  ADS  Google Scholar 

  • R.E. Froude, 1889, On the part played in propulsion by differences of fluid pressure, Trans. Inst. Naval Architects, Vol. 30, P. 390–405.

    Google Scholar 

  • R.E. Froude, 1911, The acceleration in front of a propeller, Trans. Inst. of Naval Architects, Vol. 53, P. 139–182.

    Google Scholar 

  • Y. Fukumoto, V.L. Okulov, and D.H. Wood, 2015, The contribution of Kawada to the analytical solution for the velocity induced by a helical vortex filament, ASME Appl. Mech. Rev., Vol. 67, No. 6, P. 060801.

    Article  ADS  Google Scholar 

  • W.K. George, 1989, The self-preservation of turbulent flows and its relation to initial conditions and coherent struc-tures, Advances in Turbulence, W.K. George and R. Anndt. (Eds.), Hemisphere Publ. Corp., N.Y., P. 39–73.

    Google Scholar 

  • H. Glauert, 1935, Airplane propellers: Division L, Aerodynamic Theory IV, W.F. Durand (Ed.), P. 169–360, Sprin-ger, Berlin.

  • S. Goldstein, 1929, On the vortex theory of screw propellers, Proc. Roy. Soc. London A, Vol. 123, P. 440–465.

    Article  ADS  MATH  Google Scholar 

  • A.K. Gupta, 2015, Efficient wind energy conversion: evolution to modern design, J. Energy Resour. Technol., Vol. 137, No. 5, P. 051201–1–051201–10.

    Article  Google Scholar 

  • N. Jensen, 1983, A note on wind turbine interaction, Technical report Ris-M-2411, Roskilde, Denmark: Risø National Laboratory.

    Google Scholar 

  • F. Jiang, H.I. Andersson, J.P. Gallardo, and V.L. Okulov, 2016, On the peculiar structure of a helical wake vortex behind an inclined prolate spheroid, J. Fluid Mech., Vol. 801, P. 1–12.

    Article  ADS  MathSciNet  Google Scholar 

  • P.B. Johansson, and W.K. George, The far downstream evolution of the high-Reynolds number axisymmetric wake behind a disk. Part 1. Single-point statistics, J. Fluid Mech., 2006, Vol. 555, P. 363–385.

    Article  ADS  MATH  Google Scholar 

  • N.E. Joukowsky, 1912, Vortex theory of screw propeller I, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya, Vol. 16, Iss. 14, P. 1–31.

    Google Scholar 

  • N.E. Joukowsky, 1914, Vortex theory of screw propeller II, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya, Vol. 17, Iss. 1.

    Google Scholar 

  • N.E. Joukowsky, 1915, Vortex theory of screw propeller III, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya, Vol. 18, Iss. 2.

    Google Scholar 

  • N.E. Joukowsky, 1918, Vortex theory of screw propeller IV, Trudy Avia Raschetno-Ispytatelnogo Byuro, Vol. 3–4, P. 1–97.

    Google Scholar 

  • M.O.L. Hansen, 2008, Aerodynamics of Wind Turbines, Earthscan (Ed.).

    Google Scholar 

  • M. Hand, D. Simms, L. Fingersh, D. Jager, J. Cotrell, S. Schreck, and S. Larwood, 2001, Unsteady aerodynamics experiment phase vi: Wind tunnel test configurations and available data campaigns, Technical report NREL/TP. No. 500-29955.

    Google Scholar 

  • Th. van Holten, 1981, Concentrator systems for wind energy, with emphasis on tip-vanes, Wind Engng, Vol. 5, No. 1, P. 29–45.

    Google Scholar 

  • J. Hong, M. Toloui, L.P. Chamorro, and M. Guala, 2014, Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine, Nature Communications, Vol. 5, No. 4216, P. 1–9.

    Google Scholar 

  • G.A.M. van Kuik, Momentum theory of Joukowsky actuator discs with swirl, J. Physics: Conference Series, IOP Publishing, 2016, Vol. 753, No. 2, P. 022021.

    Google Scholar 

  • G.A.M. van Kuik, J.N. Sørensen, and V.L. Okulov, 2015, Rotor theories by professor Joukowsky: Momentum theo-ries, Progress in Aerospace Sciences, Vol. 73, P. 1–18.

    Article  Google Scholar 

  • G.C. Larsen, H.A. Madsen, F. Bingöl, J. Mann, S. Ott et al., 2007, Dynamic wake meandering modeling, Risø National Laboratory.

    Google Scholar 

  • T. J. Larsen, H.A. Madsen, G.C. Larsen, and K.S. Hansen, 2013, Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm, Wind Energy, Vol. 16, No. 4, P. 605–624.

    Article  ADS  Google Scholar 

  • I.V. Litvinov, I.V. Naumov, V.L. Okulov, and R.F. Mikkelsen, 2015, Comparison of far wake behind solid disk and three blades rotor, J. Flow Visualization and Image Processing, Vol. 22, No. 4, P. 175–183.

    Article  Google Scholar 

  • D. Medici and P.H. Alfredsson, 2006, Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding, Wind Energy, Vol. 9, P. 219–236.

    Article  ADS  Google Scholar 

  • I.V. Naumov, I.K. Kabardin, R.F. Mikkelsen, V.L. Okulov, and J.N. Sørensen, Performance and wake conditions of a rotor located in the wake of an obstacle, J. Phys.: Conference Series. IOP Publishing, 2016, Vol. 753, No. 3, P. 032051.

    Google Scholar 

  • I.V. Naumov, I.K. Kabardin, R.F. Mikkelsen, V.L. Okulov, and J.N. Sørensen, 2017, An influence of the different incoming wake-like flows on the rotor vibrations, J. Phys.: Conference Series. IOP Publishing, Vol. 854, P. 012034.

    Google Scholar 

  • I.V. Naumov, I.V. Litvinov, R.F. Mikkelsen, and V.L. Okulov, 2015, Investigation of a wake decay behind a circu-lar disk in a hydro channel at high Reynolds numbers, Thermophysics and Aeromechanics, Vol. 22, No.6, P. 657–665.

    Article  ADS  Google Scholar 

  • I.V. Naumov, I.V. Litvinov, R.F. Mikkelsen, and V.L. Okulov, 2016, Experimental investigation of wake evolution behind a couple of flat discs in a hydrochannel, Thermophysics and Aeromechanics, Vol. 23, No. 5, P. 657–666.

    Article  ADS  Google Scholar 

  • I.V. Naumov, R.F. Mikkelsen, and V.L. Okulov, 2016, Estimation of wake propagation behind the rotors of wind-powered generators, Thermal Engng, Vol. 63, No. 3, P. 208–213.

    Article  ADS  Google Scholar 

  • I.V. Naumov, R.F. Mikkelsen, V.L. Okulov, and J.N. Sørensen, 2014, PIV and LDA measurements of the wake behind a wind turbine model, J. Phys.: Conference Series, Vol. 524, P. 012168.

    Google Scholar 

  • I.V. Naumov, V.V. Rakhmanov, V.L. Okulov, K.M. Velta, K.E. Mayer, and R.F. Mikkelsen, 2012, Flow diagnostics downstream of a tribladed rotor model, Thermophysics and Aeromechanics, Vol. 19, No. 2, P. 268–278.

    Article  Google Scholar 

  • V.S. Neary, B. Gunawan, C. Hill, and L.P. Chamorro, 2013, Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison, Renewable Energy, Vol. 60, P. 1–6.

    Article  Google Scholar 

  • B.G. Novikov, 2009, Effect of small total pulse on development of a wake behind the self-propelled bodies, Thermophysics and Aeromechanics, Vol. 16, No. 4, P. 561–583.

    Article  ADS  Google Scholar 

  • N.G. Nygaard, Wakes in very large wind farms and the effect of neighbouring wind farms, J. Phys.: Conference Series. IOP Publishing, 2014, Vol. 524, No. 1, P. 012162.

    Google Scholar 

  • V.L. Okulov, Limit cases for rotor theories with Betz optimization, J. Phys.: Conference Series. IOP Publishing, 2014, Vol. 524, No. 1, P. 012129.

    Google Scholar 

  • V.L. Okulov, 2016, An acentric rotation of two helical vortices of the same circulations, Regular and Chaotic Dynamics, Vol. 21, No. 3, P. 267–273.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V.L. Okulov, I.V. Litvinov, R.F. Mikkelsen, I.V. Naumov, and J.N. Sørensen, 2017a, Wake developments behind different configurations of passive disks and active rotors, J. Phys.: Conference Series. IOP Publishing, Vol. 854, P. 012035.

    Google Scholar 

  • V.L. Okulov, I.V. Litvinov, I.V. Naumov, and R. Mikkelsen, 2017b, Self-similarity of far wake behind tandem of two disks, J. Engng Thermophysics, Vol. 26, No. 2, P. 154–159.

    Article  Google Scholar 

  • V.L. Okulov, R.F. Mikkelsen, I.V. Litvinov, and I.V. Naumov, Efficiency of operation of wind generator rotors optimized by the Glauert and Betz methods, Techn. Phys., 2015, Vol. 60, No. 11, P. 1632–1636.

    Article  ADS  Google Scholar 

  • V.L. Okulov, R.F. Mikkelsen, I.V. Naumov, I.V. Litvinov, E. Gesheva, and J.N. Sørensen, 2016, Comparison of the far wake behind dual rotor and dual disk configurations, J. Phys.: Conference Series. IOP Publishing, Vol. 753, No. 3, P. 032060.

    Google Scholar 

  • V.L. Okulov, R.F. Mikkelsen, J.N. Sørensen, I.V. Naumov, and M.A. Tsoy, 2017, Power properties of two interact-ing wind turbine rotors, ASME. J. Energy Resour. Technol., Vol. 139, No. 5, P. 051210–1–051210–6.

    Article  Google Scholar 

  • V.L. Okulov, I.V. Naumov, R.F. Mikkelsen, I.K. Kabardin, and J.N. Sørensen, 2014, A regular Strouhal number for large-scale instability in the far wake of a rotor, J. Fluid Mech., Vol. 747, P. 369–380.

    Article  ADS  Google Scholar 

  • V.L. Okulov, I.V. Naumov, R.F. Mikkelsen, and J.N. Sørensen, 2015, Wake effect on a uniform flow behind wind-turbine model, J. Phys.: Conference Series. IOP Publishing, Vol. 625, No. 1, P. 012011.

    Google Scholar 

  • V.L. Okulov, I.V. Naumov, and J.N. Sørensen, 2007, Optical diagnostics of intermittent flows, Techn. Phys., Vol. 77, No. 5, P. 47–57.

    Google Scholar 

  • V.L. Okulov, I.V. Naumov, M.A. Tsoi, and R.F. Mikkelsen, 2017, Loss of efficiency in coaxial arrangement of the pair of wind turbines, Thermophysics and Aeromechanics, Vol. 24, No. 4, P. 545–551.

    Article  ADS  Google Scholar 

  • V.L. Okulov and J.N. Sorensen, 2007, Stability of helical tip vortices in a rotor far wake, J. Fluid Mech., Vol. 576, P. 1–25.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • V.L. Okulov and J.N. Sorensen, 2008, Refined betz limit for rotors with a finite number of blades, Wind Energy, Vol. 11, No. 4, P. 415–426.

    Article  ADS  Google Scholar 

  • V.L. Okulov and J.N. Sorensen, 2010a, Applications of 2D helical vortex dynamics, Theor. Comput. Fluid Dyn., Vol. 24, P. 395–401.

    Article  MATH  Google Scholar 

  • V.L. Okulov and J.N. Sorensen, 2010b, Maximum efficiency of wind turbine rotors using Joukowsky and Betz ap-proaches, J. Fluid Mech., Vol. 649, P. 497–508.

    Article  ADS  MATH  Google Scholar 

  • V.L. Okulov, J.N. Sorensen, and W.Z. Shen, 2016, Expansion of Goldstein's circulation function for optimal rotors with hub, J. Phys.: Conference Series. IOP Publishing, Vol. 753, No. 2, P. 022018.

    Google Scholar 

  • V.L. Okulov, J.N. Sørensen, and G.A.M. van Kuik, 2013, Development of the Optimum Rotor Theories, Moscow-Izhevsk: R&C Dyn.

    Google Scholar 

  • V.L. Okulov, J.N. Sorensen, and D.H. Wood, 2015, The rotor theories by professor Joukowsky: Vortex theories, Progress in Aerospace Sci., Vol. 73, P. 19–46.

    Article  Google Scholar 

  • H.U. Quaranta and T. Leweke, 2015, Long-wave instability of a helical vortex, J. Fluid Mech., Vol. 780, P. 687–716.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • W.J.M. Rankine, 1865, On the mechanical principles of the action of propellers, Trans. Inst. Naval Architects, Vol. 6, P. 13–39.

    Google Scholar 

  • A. Segalini and P. Inghels, 2014, Confinement effects in wind-turbine and propeller measurements, J. Fluid Mech., Vol. 756, P. 110–129.

    Article  ADS  Google Scholar 

  • M.S. Selig, J.J. Guglielmo, A.P. Broeren, and P. Giguere, 1995, Summary of Low-Speed Airfoil Data, Vol. 1, SolarTech Publication.

    Google Scholar 

  • J.N. Sørensen, 2016, General Momentum Theory for Horizontal Axis Wind Turbines, Springer.

    Book  Google Scholar 

  • J.N. Sørensen and G.A.M. van Kuik, 2010, General momentum theory for wind turbines at low tip speed ratios, Wind Energy, Vol. 14, P. 821–839.

    Article  ADS  Google Scholar 

  • J.N. Sørensen, R.F. Mikkelsen, N. Troldborg, V. Okulov, and W.Z. Shen, 2013, The aerodynamics of wind turbines, in: Proc. 22nd Int. Congress of Theoretical and Applied Mechanics, ICTAM 2008, P. 231–247, Mechanics Down Under.

    Google Scholar 

  • J.N. Sørensen, V.L. Okulov, R.F. Mikkelsen, I.V. Naumov, and I.V. Litvinov, 2016, Comparison of classical methods for blade design and the influence of tip correction on rotor performance, J. Phys.: Conference Series. IOP Publishing, Vol. 753, No. 2, P. 022020.

    Google Scholar 

  • B.M. Sumer and J. Fredøse, 2006, Hydrodynamics around cylindrical structures, Advanced Series on Ocean Engi-neering 26, World Scientific.

    Google Scholar 

  • B. Sunden and Z. Wu, 2015, On icing and icing mitigation of wind turbine blades in cold climate, J. Energy Resour. Technol., Vol. 137, No. 5, P. 051203–1–051203–10.

    Article  Google Scholar 

  • K.W. van Treuren, 2015, Small-scale wind turbine testing in wind tunnels under low Reynolds number conditions, J. Energy Resour. Technol., Vol. 137, No. 5, P. 051208–1–051208–11.

    Article  Google Scholar 

  • L. Vermeer, J.N. Sørensen, and A. Crespo, 2003, Wind turbine wake aerodynamics, Progress in Aerospace Sci., Vol. 39, P. 467–510.

    Article  ADS  Google Scholar 

  • O.F. Voropaeva, O.A. Druzhinin, and G.G. Chernykh, 2016, Numerical simulation of momentumless turbulent wake dynamics in linearly stratified medium, J. Engng Thermophysics, Vol. 25, No. 1, P. 85–99.

    Article  Google Scholar 

  • Q.R. Wald, 2006, The aerodynamics of propellers, Progress in Aerospace Sci., Vol. 42, No. 2, P. 85–128.

    Article  ADS  MathSciNet  Google Scholar 

  • J.H. Walther, M. Guenot, E. Machefaux, J.T. Rasmucsen et al., 2007, A numerical study of the stabilitiy of helical vortices using vortex methods, J. Phys.: Conference Series. IOP Publishing, Vol. 75, No. 1, P. 012034.

    Google Scholar 

  • D.H. Wood and V.L. Okulov, 2017, Nonlinear blade element-momentum analysis of Betz-Goldstein rotors, Renewa-ble Energy, Vol. 107, P. 542–549.

    Article  Google Scholar 

  • D.H. Wood, V.L. Okulov, and D. Bhattacharjee, 2016, Direct calculation of wind turbine tip loss, Renewable Ener-gy, Vol. 95, P. 269–276.

    Article  Google Scholar 

  • J. Yang, M. Liu, G. Wu, W. Zhong, and X. Zhang, 2014, Numerical study on coherent structure behind a circular disk, J. Fluids Struct., Vol. 51, P. 172–188.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Okulov.

Additional information

The work was financially supported by the Russian Science Foundation (Grant 14-19-00487)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okulov, V.L. The role of laboratory testing in the development of rotor aerodynamics (review). Thermophys. Aeromech. 25, 1–20 (2018). https://doi.org/10.1134/S0869864318010018

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864318010018

Keywords

Navigation