Thermophysics and Aeromechanics

, Volume 25, Issue 1, pp 1–20 | Cite as

The role of laboratory testing in the development of rotor aerodynamics (review)

  • V. L. Okulov


The aim of the review is to assess the value of model experimental studies for the development of classical rotor aerodynamics as well as to describe the most significant recent results stimulated by intense development of wind power.


rotor aerodynamics vortex wake behind the rotor wind power plant interaction between the rotor and the wake power loss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S.V. Alekseenko, P.A. Kuibin, and V.L. Okulov, 2007, Theory of Concentrated Vortices: an Introduction, Springer-Verlag, Berlin-Heidelberg.zbMATHGoogle Scholar
  2. P. Bachant and M. Wosnik, 2015, Characterising the near-wake of a cross-flow turbine, J. Turbulence, Vol. 16, No. 4, P. 392–410.ADSGoogle Scholar
  3. R.J. Barthelmie, K. Hansen, S.T. Frandsen, O. Rathmann, J.G. Schepers, W. Schlez, J. Phillips, K. Rados, A. Zervos, E.S. Politis, and P.K. Chaviaropoulos, 2009, Modeling and measuring flow and wind turbine wakes in large wind farms offshore, Wind Energy, Vol. 12, No. 5, P. 431–444.ADSGoogle Scholar
  4. J. Bartl, F. Pierella, and L. Sætran, 2012, Wake measurements behind an array of two model wind turbines, Energy Procedia, Vol. 24, P. 305–312.Google Scholar
  5. M. Bastankhan and F. Porté-Agel, 2014, A new analytical model for wind turbine wakes, Renewable Energy, Vol. 70, P. 116–123.Google Scholar
  6. M. Bastankhan and F. Porté-Agel, 2016, Experimental and theoretical study of wind turbine wakes in yawed conditions, J. Fluid Mech., Vol. 806, P. 506–541.ADSzbMATHGoogle Scholar
  7. A. Betz, 1919, Schraubenpropeller mit geringstem Energieverlust: mit einem Zusatz von L. Prandtl, Göttinger Nachrichten 196, bis 217, Göttingen.Google Scholar
  8. L.P. Chamorro, C. Hill, S. Morton, C. Ellis, R.E.A. Arndt, and F. Sotiropoulos, 2013, On the interaction between a turbulent open channel flow and an axial-flow turbine, J. Fluid Mech., Vol. 716, P. 658–670.ADSzbMATHGoogle Scholar
  9. G.V. Ermolenko, I.G. Gordeev, A.V. Nikomarova, M.A. Ryzhenkov, and V.N. Tskhomariya, 2012, Pilot projects of network wind power in the Eisk region of Krasnodar krai: The state and prospects, Thermal Engng, Vol. 59, No. 11, P. 846–853.ADSGoogle Scholar
  10. N.P. Dufresne and M. Wosnik, 2013, Velocity deficit and swirl in the turbulent wake of a wind turbine, J. Marine Technology Society, Vol. 47, No. 4, P. 193–205.Google Scholar
  11. M. Felli, R. Camussi, and F. Di Felice, 2011, Mechanisms of evolution of the propeller wake in the transition and far fields, J. Fluid Mech., Vol. 682, P. 5–53.ADSzbMATHGoogle Scholar
  12. O.A.H. Flamm, Die Schiffschraube und ihre Wirkung auf das Wasser, Berlin, 1909.Google Scholar
  13. V.E. Fortov and O.S. Popel’, 2014, The current status of the development of renewable energy sources worldwide and in Russia, Thermal Engng, Vol. 61, No. 6, P. 389–398.ADSGoogle Scholar
  14. P. Fraunie, C. Beguier, I. Paraschivoiu, and G. Brochier, Water channel experiments of dynamic stall on Darrieus wind turbine blades, J. Propulsion and Power, 1986, Vol. 2, No. 5, P. 445–449.ADSGoogle Scholar
  15. R.E. Froude, 1889, On the part played in propulsion by differences of fluid pressure, Trans. Inst. Naval Architects, Vol. 30, P. 390–405.Google Scholar
  16. R.E. Froude, 1911, The acceleration in front of a propeller, Trans. Inst. of Naval Architects, Vol. 53, P. 139–182.Google Scholar
  17. Y. Fukumoto, V.L. Okulov, and D.H. Wood, 2015, The contribution of Kawada to the analytical solution for the velocity induced by a helical vortex filament, ASME Appl. Mech. Rev., Vol. 67, No. 6, P. 060801.ADSGoogle Scholar
  18. W.K. George, 1989, The self-preservation of turbulent flows and its relation to initial conditions and coherent struc-tures, Advances in Turbulence, W.K. George and R. Anndt. (Eds.), Hemisphere Publ. Corp., N.Y., P. 39–73.Google Scholar
  19. H. Glauert, 1935, Airplane propellers: Division L, Aerodynamic Theory IV, W.F. Durand (Ed.), P. 169–360, Sprin-ger, Berlin.Google Scholar
  20. S. Goldstein, 1929, On the vortex theory of screw propellers, Proc. Roy. Soc. London A, Vol. 123, P. 440–465.ADSzbMATHGoogle Scholar
  21. A.K. Gupta, 2015, Efficient wind energy conversion: evolution to modern design, J. Energy Resour. Technol., Vol. 137, No. 5, P. 051201–1–051201–10.Google Scholar
  22. N. Jensen, 1983, A note on wind turbine interaction, Technical report Ris-M-2411, Roskilde, Denmark: Risø National Laboratory.Google Scholar
  23. F. Jiang, H.I. Andersson, J.P. Gallardo, and V.L. Okulov, 2016, On the peculiar structure of a helical wake vortex behind an inclined prolate spheroid, J. Fluid Mech., Vol. 801, P. 1–12.ADSMathSciNetGoogle Scholar
  24. P.B. Johansson, and W.K. George, The far downstream evolution of the high-Reynolds number axisymmetric wake behind a disk. Part 1. Single-point statistics, J. Fluid Mech., 2006, Vol. 555, P. 363–385.ADSzbMATHGoogle Scholar
  25. N.E. Joukowsky, 1912, Vortex theory of screw propeller I, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya, Vol. 16, Iss. 14, P. 1–31.Google Scholar
  26. N.E. Joukowsky, 1914, Vortex theory of screw propeller II, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya, Vol. 17, Iss. 1.Google Scholar
  27. N.E. Joukowsky, 1915, Vortex theory of screw propeller III, Trudy Otdeleniya Fizicheskikh Nauk Obshchestva Lubitelei Estestvoznaniya, Vol. 18, Iss. 2.Google Scholar
  28. N.E. Joukowsky, 1918, Vortex theory of screw propeller IV, Trudy Avia Raschetno-Ispytatelnogo Byuro, Vol. 3–4, P. 1–97.Google Scholar
  29. M.O.L. Hansen, 2008, Aerodynamics of Wind Turbines, Earthscan (Ed.).Google Scholar
  30. M. Hand, D. Simms, L. Fingersh, D. Jager, J. Cotrell, S. Schreck, and S. Larwood, 2001, Unsteady aerodynamics experiment phase vi: Wind tunnel test configurations and available data campaigns, Technical report NREL/TP. No. 500-29955.Google Scholar
  31. Th. van Holten, 1981, Concentrator systems for wind energy, with emphasis on tip-vanes, Wind Engng, Vol. 5, No. 1, P. 29–45.Google Scholar
  32. J. Hong, M. Toloui, L.P. Chamorro, and M. Guala, 2014, Natural snowfall reveals large-scale flow structures in the wake of a 2.5-MW wind turbine, Nature Communications, Vol. 5, No. 4216, P. 1–9.Google Scholar
  33. G.A.M. van Kuik, Momentum theory of Joukowsky actuator discs with swirl, J. Physics: Conference Series, IOP Publishing, 2016, Vol. 753, No. 2, P. 022021.Google Scholar
  34. G.A.M. van Kuik, J.N. Sørensen, and V.L. Okulov, 2015, Rotor theories by professor Joukowsky: Momentum theo-ries, Progress in Aerospace Sciences, Vol. 73, P. 1–18.Google Scholar
  35. G.C. Larsen, H.A. Madsen, F. Bingöl, J. Mann, S. Ott et al., 2007, Dynamic wake meandering modeling, Risø National Laboratory.Google Scholar
  36. T. J. Larsen, H.A. Madsen, G.C. Larsen, and K.S. Hansen, 2013, Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm, Wind Energy, Vol. 16, No. 4, P. 605–624.ADSGoogle Scholar
  37. I.V. Litvinov, I.V. Naumov, V.L. Okulov, and R.F. Mikkelsen, 2015, Comparison of far wake behind solid disk and three blades rotor, J. Flow Visualization and Image Processing, Vol. 22, No. 4, P. 175–183.Google Scholar
  38. D. Medici and P.H. Alfredsson, 2006, Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding, Wind Energy, Vol. 9, P. 219–236.ADSGoogle Scholar
  39. I.V. Naumov, I.K. Kabardin, R.F. Mikkelsen, V.L. Okulov, and J.N. Sørensen, Performance and wake conditions of a rotor located in the wake of an obstacle, J. Phys.: Conference Series. IOP Publishing, 2016, Vol. 753, No. 3, P. 032051.Google Scholar
  40. I.V. Naumov, I.K. Kabardin, R.F. Mikkelsen, V.L. Okulov, and J.N. Sørensen, 2017, An influence of the different incoming wake-like flows on the rotor vibrations, J. Phys.: Conference Series. IOP Publishing, Vol. 854, P. 012034.Google Scholar
  41. I.V. Naumov, I.V. Litvinov, R.F. Mikkelsen, and V.L. Okulov, 2015, Investigation of a wake decay behind a circu-lar disk in a hydro channel at high Reynolds numbers, Thermophysics and Aeromechanics, Vol. 22, No.6, P. 657–665.ADSGoogle Scholar
  42. I.V. Naumov, I.V. Litvinov, R.F. Mikkelsen, and V.L. Okulov, 2016, Experimental investigation of wake evolution behind a couple of flat discs in a hydrochannel, Thermophysics and Aeromechanics, Vol. 23, No. 5, P. 657–666.ADSGoogle Scholar
  43. I.V. Naumov, R.F. Mikkelsen, and V.L. Okulov, 2016, Estimation of wake propagation behind the rotors of wind-powered generators, Thermal Engng, Vol. 63, No. 3, P. 208–213.ADSGoogle Scholar
  44. I.V. Naumov, R.F. Mikkelsen, V.L. Okulov, and J.N. Sørensen, 2014, PIV and LDA measurements of the wake behind a wind turbine model, J. Phys.: Conference Series, Vol. 524, P. 012168.Google Scholar
  45. I.V. Naumov, V.V. Rakhmanov, V.L. Okulov, K.M. Velta, K.E. Mayer, and R.F. Mikkelsen, 2012, Flow diagnostics downstream of a tribladed rotor model, Thermophysics and Aeromechanics, Vol. 19, No. 2, P. 268–278.Google Scholar
  46. V.S. Neary, B. Gunawan, C. Hill, and L.P. Chamorro, 2013, Near and far field flow disturbances induced by model hydrokinetic turbine: ADV and ADP comparison, Renewable Energy, Vol. 60, P. 1–6.Google Scholar
  47. B.G. Novikov, 2009, Effect of small total pulse on development of a wake behind the self-propelled bodies, Thermophysics and Aeromechanics, Vol. 16, No. 4, P. 561–583.ADSGoogle Scholar
  48. N.G. Nygaard, Wakes in very large wind farms and the effect of neighbouring wind farms, J. Phys.: Conference Series. IOP Publishing, 2014, Vol. 524, No. 1, P. 012162.Google Scholar
  49. V.L. Okulov, Limit cases for rotor theories with Betz optimization, J. Phys.: Conference Series. IOP Publishing, 2014, Vol. 524, No. 1, P. 012129.Google Scholar
  50. V.L. Okulov, 2016, An acentric rotation of two helical vortices of the same circulations, Regular and Chaotic Dynamics, Vol. 21, No. 3, P. 267–273.ADSMathSciNetzbMATHGoogle Scholar
  51. V.L. Okulov, I.V. Litvinov, R.F. Mikkelsen, I.V. Naumov, and J.N. Sørensen, 2017a, Wake developments behind different configurations of passive disks and active rotors, J. Phys.: Conference Series. IOP Publishing, Vol. 854, P. 012035.Google Scholar
  52. V.L. Okulov, I.V. Litvinov, I.V. Naumov, and R. Mikkelsen, 2017b, Self-similarity of far wake behind tandem of two disks, J. Engng Thermophysics, Vol. 26, No. 2, P. 154–159.Google Scholar
  53. V.L. Okulov, R.F. Mikkelsen, I.V. Litvinov, and I.V. Naumov, Efficiency of operation of wind generator rotors optimized by the Glauert and Betz methods, Techn. Phys., 2015, Vol. 60, No. 11, P. 1632–1636.ADSGoogle Scholar
  54. V.L. Okulov, R.F. Mikkelsen, I.V. Naumov, I.V. Litvinov, E. Gesheva, and J.N. Sørensen, 2016, Comparison of the far wake behind dual rotor and dual disk configurations, J. Phys.: Conference Series. IOP Publishing, Vol. 753, No. 3, P. 032060.Google Scholar
  55. V.L. Okulov, R.F. Mikkelsen, J.N. Sørensen, I.V. Naumov, and M.A. Tsoy, 2017, Power properties of two interact-ing wind turbine rotors, ASME. J. Energy Resour. Technol., Vol. 139, No. 5, P. 051210–1–051210–6.Google Scholar
  56. V.L. Okulov, I.V. Naumov, R.F. Mikkelsen, I.K. Kabardin, and J.N. Sørensen, 2014, A regular Strouhal number for large-scale instability in the far wake of a rotor, J. Fluid Mech., Vol. 747, P. 369–380.ADSGoogle Scholar
  57. V.L. Okulov, I.V. Naumov, R.F. Mikkelsen, and J.N. Sørensen, 2015, Wake effect on a uniform flow behind wind-turbine model, J. Phys.: Conference Series. IOP Publishing, Vol. 625, No. 1, P. 012011.Google Scholar
  58. V.L. Okulov, I.V. Naumov, and J.N. Sørensen, 2007, Optical diagnostics of intermittent flows, Techn. Phys., Vol. 77, No. 5, P. 47–57.Google Scholar
  59. V.L. Okulov, I.V. Naumov, M.A. Tsoi, and R.F. Mikkelsen, 2017, Loss of efficiency in coaxial arrangement of the pair of wind turbines, Thermophysics and Aeromechanics, Vol. 24, No. 4, P. 545–551.ADSGoogle Scholar
  60. V.L. Okulov and J.N. Sorensen, 2007, Stability of helical tip vortices in a rotor far wake, J. Fluid Mech., Vol. 576, P. 1–25.ADSMathSciNetzbMATHGoogle Scholar
  61. V.L. Okulov and J.N. Sorensen, 2008, Refined betz limit for rotors with a finite number of blades, Wind Energy, Vol. 11, No. 4, P. 415–426.ADSGoogle Scholar
  62. V.L. Okulov and J.N. Sorensen, 2010a, Applications of 2D helical vortex dynamics, Theor. Comput. Fluid Dyn., Vol. 24, P. 395–401.zbMATHGoogle Scholar
  63. V.L. Okulov and J.N. Sorensen, 2010b, Maximum efficiency of wind turbine rotors using Joukowsky and Betz ap-proaches, J. Fluid Mech., Vol. 649, P. 497–508.ADSzbMATHGoogle Scholar
  64. V.L. Okulov, J.N. Sorensen, and W.Z. Shen, 2016, Expansion of Goldstein's circulation function for optimal rotors with hub, J. Phys.: Conference Series. IOP Publishing, Vol. 753, No. 2, P. 022018.Google Scholar
  65. V.L. Okulov, J.N. Sørensen, and G.A.M. van Kuik, 2013, Development of the Optimum Rotor Theories, Moscow-Izhevsk: R&C Dyn.Google Scholar
  66. V.L. Okulov, J.N. Sorensen, and D.H. Wood, 2015, The rotor theories by professor Joukowsky: Vortex theories, Progress in Aerospace Sci., Vol. 73, P. 19–46.Google Scholar
  67. H.U. Quaranta and T. Leweke, 2015, Long-wave instability of a helical vortex, J. Fluid Mech., Vol. 780, P. 687–716.ADSMathSciNetzbMATHGoogle Scholar
  68. W.J.M. Rankine, 1865, On the mechanical principles of the action of propellers, Trans. Inst. Naval Architects, Vol. 6, P. 13–39.Google Scholar
  69. A. Segalini and P. Inghels, 2014, Confinement effects in wind-turbine and propeller measurements, J. Fluid Mech., Vol. 756, P. 110–129.ADSGoogle Scholar
  70. M.S. Selig, J.J. Guglielmo, A.P. Broeren, and P. Giguere, 1995, Summary of Low-Speed Airfoil Data, Vol. 1, SolarTech Publication.Google Scholar
  71. J.N. Sørensen, 2016, General Momentum Theory for Horizontal Axis Wind Turbines, Springer.Google Scholar
  72. J.N. Sørensen and G.A.M. van Kuik, 2010, General momentum theory for wind turbines at low tip speed ratios, Wind Energy, Vol. 14, P. 821–839.Google Scholar
  73. J.N. Sørensen, R.F. Mikkelsen, N. Troldborg, V. Okulov, and W.Z. Shen, 2013, The aerodynamics of wind turbines, in: Proc. 22nd Int. Congress of Theoretical and Applied Mechanics, ICTAM 2008, P. 231–247, Mechanics Down Under.Google Scholar
  74. J.N. Sørensen, V.L. Okulov, R.F. Mikkelsen, I.V. Naumov, and I.V. Litvinov, 2016, Comparison of classical methods for blade design and the influence of tip correction on rotor performance, J. Phys.: Conference Series. IOP Publishing, Vol. 753, No. 2, P. 022020.Google Scholar
  75. B.M. Sumer and J. Fredøse, 2006, Hydrodynamics around cylindrical structures, Advanced Series on Ocean Engi-neering 26, World Scientific.Google Scholar
  76. B. Sunden and Z. Wu, 2015, On icing and icing mitigation of wind turbine blades in cold climate, J. Energy Resour. Technol., Vol. 137, No. 5, P. 051203–1–051203–10.Google Scholar
  77. K.W. van Treuren, 2015, Small-scale wind turbine testing in wind tunnels under low Reynolds number conditions, J. Energy Resour. Technol., Vol. 137, No. 5, P. 051208–1–051208–11.Google Scholar
  78. L. Vermeer, J.N. Sørensen, and A. Crespo, 2003, Wind turbine wake aerodynamics, Progress in Aerospace Sci., Vol. 39, P. 467–510.ADSGoogle Scholar
  79. O.F. Voropaeva, O.A. Druzhinin, and G.G. Chernykh, 2016, Numerical simulation of momentumless turbulent wake dynamics in linearly stratified medium, J. Engng Thermophysics, Vol. 25, No. 1, P. 85–99.Google Scholar
  80. Q.R. Wald, 2006, The aerodynamics of propellers, Progress in Aerospace Sci., Vol. 42, No. 2, P. 85–128.ADSMathSciNetGoogle Scholar
  81. J.H. Walther, M. Guenot, E. Machefaux, J.T. Rasmucsen et al., 2007, A numerical study of the stabilitiy of helical vortices using vortex methods, J. Phys.: Conference Series. IOP Publishing, Vol. 75, No. 1, P. 012034.Google Scholar
  82. D.H. Wood and V.L. Okulov, 2017, Nonlinear blade element-momentum analysis of Betz-Goldstein rotors, Renewa-ble Energy, Vol. 107, P. 542–549.Google Scholar
  83. D.H. Wood, V.L. Okulov, and D. Bhattacharjee, 2016, Direct calculation of wind turbine tip loss, Renewable Ener-gy, Vol. 95, P. 269–276.Google Scholar
  84. J. Yang, M. Liu, G. Wu, W. Zhong, and X. Zhang, 2014, Numerical study on coherent structure behind a circular disk, J. Fluids Struct., Vol. 51, P. 172–188.ADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.The Technical University of DenmarkLyngbyDenmark
  2. 2.Kutateladze Institute of Thermophysics SB RASNovosibirskRussia

Personalised recommendations