Skip to main content
Log in

An exact solution for thermal analysis of a cylindrical object using hyperbolic thermal conduction model

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

In this paper, the hyperbolic heat conduction equation in a cylinder subjected to a special heat flux boundary condition is solved. Equations are solved by deriving the analytical solution using separation of variables method. The temperature layers and profiles of sample calculations are presented. The wavy nature of this kind of heat conduction can easily be seen in the temperature profiles. It is found that with the increasing Vernotte number, a point can get to higher temperature during the process. Also, it can be perceived from temperature profiles that it is possible that the temperature of different points of object becomes even lower than the initial temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Maurer and H.A. Thompson, Non-Fourier effects at high heat flux, J. Heat Transfer, 1973, Vol. 95, Iss. 2, P. 284–286.

    Article  Google Scholar 

  2. M.N. Özisik, Finite Difference Methods in Heat Transfer, CRC Press, Boca Raton, 1994.

    MATH  Google Scholar 

  3. J.C. Maxwell, On the dynamic theory of gases, Phil. Trans. Roy. Soc. London, 1867, Vol. 157, P. 49–88.

    Article  Google Scholar 

  4. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1, McGraw-Hill, N. Y., 1953.

  5. C. Cattaneo, Sur une forme de l’equation de la chaleur eliminant le paradoxe d’une propagation instantanée, Comptes Rendus Acad. Sc., 1958, Vol. 247, P. 431–433.

    MATH  Google Scholar 

  6. P. Vernotte, Les paradoxes de la théorie continue de l’equation de la chaleur, Comptes Rendus Acad. Sci., 1958, Vol. 246, P. 3154–3155.

    MATH  Google Scholar 

  7. W. Shen and S. Han, A numerical solution of two-dimensional hyperbolic heat conduction with non-linear boundary conditions, Heat Mass Transfer, 2003, Vol. 39, Nos. 5, 6, P. 499–507.

    Article  ADS  Google Scholar 

  8. H.E. Jackson and C.T. Walker, Thermal conductivity, second sound, and phonon-phonon interactions in NaF, Phys. Rev. B, 1971, Vol. 3, No. 4, P. 1428–1439.

    Article  ADS  Google Scholar 

  9. V. Narayanamurti and R.C. Dynes, Observation of second sound in bismuth, Phys. Rev. Lett., 1972, Vol. 28, No. 22, P. 1461–1465.

    Article  ADS  Google Scholar 

  10. J. Zhou, Y. Zhang, and J.K. Chen, An axisymmetric dual-phase-lag bioheat model for laser heating of living tissues, Int. J. Thermal Sci., 2009, Vol. 48, No. 8, P. 1477–1485.

    Article  Google Scholar 

  11. J. Zhou, J.K. Chen, and Y. Zhang, Dual-phase-lag effects on thermal damage to biological tissues caused by laser irradiations, Computers in Biology and Medicine, 2009, Vol. 39, No. 3, P. 286–293.

    Article  Google Scholar 

  12. F. Xu, K.A. Seffen, and T.J. Liu, Non-Fourier analysis of skin biothermomechanics, Int. J. Heat Mass Transfer, 2008, Vol. 51, Nos. 9, 10, P. 2237–2259.

    Article  MATH  Google Scholar 

  13. C. Korner and H.W. Bergmann, The physical defects of the hyperbolic heat conduction equation, Appl. Phys. A, 1998, Vol. 67, No. 4, P. 397–401.

    Article  ADS  Google Scholar 

  14. M. Al-Nimr and M. Naji, On the phase-lag effect on the nonequilibrium entropy production, Microscale Thermophysical Engng, 2000, Vol. 4, No. 4, P. 231–243.

    Article  Google Scholar 

  15. S. Galovic, D. Kostoski, G. Stamboliev, and E. Suljovrujic, Thermal wave propagation in media with thermal memory induced by pulsed laser irradiation, Radiation Phys. Chemistry, 2003, Vol. 67, Nos. 3, 4, P. 459–461.

    Article  ADS  Google Scholar 

  16. D. Jou, J. Casas-Vazquez, and G. Lebon, Extended irreversible thermodynamics, Reports on Progress in Physics, 1988, Vol. 51, No. 8, P. 1105–1179.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J.A. López Molina, M.J. Rivera, M. Trujillo, and E.J. Berjano, Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction, Medical Phys., 2009, Vol. 36, No. 4, P. 1112–1119.

    Article  ADS  Google Scholar 

  18. M. Lewandowska and L. Malinowski, An analytical solution of the hyperbolic heat conduction equation for the case of a finite medium symmetrically heated on both sides, Intern. Communs in Heat and Mass Transfer, 2006, Vol. 33, No. 1, P. 61–69.

    Article  Google Scholar 

  19. A. Moosaie, Non-Fourier heat conduction in a finite medium with arbitrary source term and initial conditions, Forschung im Ingenieurwesen, 2007, Vol. 71, Nos. 3, 4, P. 163–169.

    Article  Google Scholar 

  20. A. Moosaie, Non-Fourier heat conduction in a finite medium with insulated boundaries and arbitrary initial conditions, Intern. Communs in Heat and Mass Transfer, 2008, Vol. 35, No. 1, P. 103–111.

    Article  Google Scholar 

  21. D.W. Tang and N. Araki, Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance, Int. J. Heat Mass Transfer, 1996, Vol. 39, No. 8, P. 1585–1590.

    Article  MATH  Google Scholar 

  22. D. Zhang, L. Li, Z. Li, L. Guan, and X. Tan, Non-Fourier conduction model with thermal source term of ultra short high power pulsed laser ablation and temperature evolvement before melting, Physica B, 2005, Vol. 364, Nos. 1–4, P. 285–293.

    Article  ADS  Google Scholar 

  23. A. Saleh and M. Al-Nimr, Variational formulation of hyperbolic heat conduction problems applying Laplace transform technique, Intern. Communs in Heat and Mass Transfer, 2008, Vol. 35, No. 2, P. 204–214.

    Article  Google Scholar 

  24. F.M. Jiang and A.C.M. Sousa, Analytical solution for hyperbolic heat conduction in a hollow sphere, J. Thermophys. and Heat Transfer, 2005, Vol. 19, No. 4, P. 595–598.

    Article  Google Scholar 

  25. G. Atefi and M.R. Talaee, Non-Fourier temperature field in a solid homogeneous finite hollow cylinder, Archive Appl. Mech., 2011, Vol. 81, P. 569–583.

    Article  ADS  MATH  Google Scholar 

  26. H.T. Chen and J.Y. Lin, Numerical analysis for hyperbolic heat conduction, Int. J. Heat Mass Transfer, 1992, Vol. 36, No. 11, P. 2891–2898.

    MATH  Google Scholar 

  27. C.Y. Yang, Direct and inverse solutions of hyperbolic heat conduction problems, J. Thermophysics and Heat Transfer, 2005, Vol. 19, No. 2, P. 217–225.

    Article  Google Scholar 

  28. J. Zhou, Y. Zhang, and J.K. Chen, Non-Fourier heat conduction effect on laser-induced thermal damage in biological tissues, Numer. Heat Transfer Part A, 2008, Vol. 54, No. 1, P. 1–19.

    Article  ADS  Google Scholar 

  29. C.H. Huang and C.Y. Lin, Inverse hyperbolic conduction problem in estimating two unknown surface heat fluxes simultaneously, J. Thermophys. Heat Transfer, 2008, Vol. 22, No. 4, P. 766–774.

    Article  Google Scholar 

  30. C.Y. Yang, Direct and inverse solutions of the two-dimensional hyperbolic heat conduction problems, Appl. Math. Modelling, 2009, Vol. 33, No. 6, P. 2907–2918.

    Article  MathSciNet  MATH  Google Scholar 

  31. M.H. Babaei and Z. Chen, Transient hyperbolic heat conduction in a functionally graded hollow cylinder, J. Thermophys. Heat Transfer, 2010, Vol. 24, No. 2, P. 325–330.

    Article  Google Scholar 

  32. M. Torabi and S. Saedodin, Analytical and numerical solutions of hyperbolic heat conduction in cylindrical coordinates, J. Thermophys. Heat Transfer, 2011, Vol. 25, No. 2, P. 239–253.

    Article  MATH  Google Scholar 

  33. M. Torabi, H. Yaghoobi, and S. Saedodin, Assessment of homotopy perturbation method in nonlinear convective-radiative non-Fourier conduction heat transfer equation with variable coefficient, Thermal Sci., 2011, Vol. 15, suppl. 2, P. S263–S274.

    Article  Google Scholar 

  34. S. Saedodin, H. Yaghoobi, and M. Torabi, Application of the variational iteration method to nonlinear non- Fourier conduction heat transfer equation with variable coefficient, Heat Transfer — Asian Research, 2011, Vol. 40, No. 6, P. 513–523.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. M. Barforoush.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saedodin, S., Barforoush, M.S.M. An exact solution for thermal analysis of a cylindrical object using hyperbolic thermal conduction model. Thermophys. Aeromech. 24, 909–920 (2017). https://doi.org/10.1134/S0869864317060099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864317060099

Key words

Navigation