Skip to main content
Log in

Laminar-turbulent transition prediction module for LOGOS package

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

The present work is devoted to a description and substantiation of an original module for computing the location of laminar-turbulent transition in subsonic boundary layer flows, which is based on the eN-method and enables more accurate computations of the flow around bodies in the presence of the so-called natural transition to turbulence in the boundary layer. A combined work of the module and the RANS solver from the aerodynamic part of the LOGOS package is demonstrated by the example of the flow past a flat plate. The obtained computed locations of the beginning and the end of the laminar-turbulent transition coincide with known reference values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Numerical simulation of unsteady flows and transition to turbulence, O. Pironneau, W. Rodi, I.L. Ryhming, A.M. Savill, and T.V. Troung (Eds.), Cambridge University Press, Cambridge, 1992.

    MATH  Google Scholar 

  2. A.V. Boiko, A.V. Dovgal, G.R. Grek, and V.V. Kozlov, Physics of Transitional Shear Flows, Springer-Verlag, Berlin, 2011.

    Google Scholar 

  3. A.S. Kozelkov, Yu.N. Deryugin, D.K. Zelensky, V.A. Glazunov, A.A. Golubev, O.V. Denisova, S.V. Lashkin, R.N. Zhuchkov, N.V. Tarasova, and M.A. Sizova, Multi-functional program package LOGOS for computation of problems of fluid dynamics and heat and mass transfer on multi-processor computers: base technologies and algorithms, in: Proc. XII Int. Seminar “Super-computations and Mathematical Modelling”, 11–15 October, 2010, Sarov, 2010, P. 215–230.

    Google Scholar 

  4. B.Y. Zanin, Transition at natural conditions and comparison with the results of wind tunnel studies, in: V.V. Kozlov (Ed.), IUTAM Symp. Laminar-Turbulent Transition, Springer-Verlag, Berlin, 1985, P. 541–546.

    Chapter  Google Scholar 

  5. A. Krumbein, Transition modeling in FLOWer — transition prescription and prediction, in: E.H. Hirschel, K. Fujii, W. Haase et al. (Eds.), MEGAFLOW — Numerical Flow Simulation for Aircraft Design, Springer-Verlag, Berlin, 2005, P. 45–62.

    Chapter  Google Scholar 

  6. S. Dhawan and R. Narasimha, Some properties of boundary layer flow during transition from laminar to turbulent motion, J. Fluid Mech., 1958, Vol. 3, P. 418–436.

    Article  ADS  MATH  Google Scholar 

  7. R. Narasimha, A note on certain turbulent spot and burst frequencies, IISc Report 78 FM 10, Department of Aeronautical Engng., Indian Institute of Sci., Bangalore, 1978.

    Google Scholar 

  8. K.K. Chen and N.A. Thyson, Extension of Emmons’ spot theory to flows on blunt bodies, AIAA J., 1971, Vol. 9, No. 5, P. 821–825.

    Article  ADS  Google Scholar 

  9. G.J. Walker, Transitional flow on axial turbomachine blading, AIAA J., 1989, Vol. 27, No. 5, P. 595–602.

    Article  ADS  Google Scholar 

  10. F.R. Menter, R.B. Langtry, and S. Völker, Transition modelling for general-purpose CFD codes, Flow Turbulence Combust., 2006, Vol. 77, P. 277–303.

    Article  MATH  Google Scholar 

  11. E.M. Smirnov and A.A. Smirnovsky, Turbine vane cascade heat transfer predictions using a modified version of the {ie210-1} laminar-turbulent transition model, in: CD-ROM Proc. Int. Symp. on Heat Transfer in Gas Turbine Systems, Antalya, Turkey, 2009.

    Google Scholar 

  12. P. Malan, K. Suluksna, and E. Juntasaro, Calibrating the γ-Reθ transition model for commercial CFD, AIAA Paper, 2009, No. 2009-1142.

    Google Scholar 

  13. Cebeci T., Cousteix J. Modelling and computation of boundary layer flows, Berlin: Springer-Verlag, 1999.

    Google Scholar 

  14. P.R. Spalart and S.R. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper, 1992, No. 92-0439.

    Google Scholar 

  15. N.A. Jaffe, T.T. Okamura, and A.M.O. Smith, Determination of spatial amplification factors and their application to predicting transition, AIAA J., 1970, Vol. 8, No. 2, P. 301–307.

    Article  ADS  MATH  Google Scholar 

  16. R. Michel, D. Arnal, and E. Coustols, Stability calculations and transition criteria on two- and three-dimensional flows, in: V.V. Kozlov (Ed.), IUTAM Symp. Laminar-Turbulent Transition, Springer-Verlag, Berlin, 1985, P. 455–461.

    Chapter  Google Scholar 

  17. H.B. Squire, On the stability for three-dimensional disturbances of viscous fluid between parallel walls, Proc. R. Soc. Lond. A, 1933, Vol. 142, P. 621–628.

    Article  ADS  MATH  Google Scholar 

  18. J.L. van Ingen, Transition, pressure gradient, suction, separation and stability theory, AGARD-CP-224, 1977.

    Google Scholar 

  19. L.M. Mack, Boundary layer stability theory: Special course on stability and transition of laminar flow, AGARD Report 709, 1984.

    Google Scholar 

  20. V.N. Zhigulev and A.M. Tumin, Origin of Turbulence. Dynamic Theory of the Excitation and Development of Instabilities in Boundary Layers, Nauka, Novosibirsk, 1987.

    Google Scholar 

  21. M. Gaster, A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability, J. Fluid Mech., 1962, Vol. 14, P. 222–224.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. A.V. Boiko and Yu.M. Nechepurenko, Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections, Comput. Math. Math. Phys., 2008, Vol. 48, No. 10, P. 1699–1714.

    Article  MathSciNet  Google Scholar 

  23. A.V. Boiko and Yu.M. Nechepurenko, Technique for the numerical analysis of the riblet effect on temporal stability of plane flows, Comput. Math. Math. Phys., 2010, Vol. 50, No. 6, P. 1055–1070.

    Article  MathSciNet  Google Scholar 

  24. J.A.C. Weideman and S.C. Reddy, A MATLAB differentiation matrix suite, ACM Trans. Math. Software, 2000, Vol. 26, No. 4, P. 465–519.

    Article  MathSciNet  Google Scholar 

  25. H. Schlichting, Boundary Layer Theory, 6th Edn., McGraw Hill, New York, 1968.

    Google Scholar 

  26. D.A. Anderson, J.C. Tannehill, and R.H. Pletcher, Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corp., New York, 1984.

    MATH  Google Scholar 

  27. G.B. Schubauer and H.K. Skramstad, Laminar-boundary-layer oscillations and transition on a flat plate, NACA TR 909, 1948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Boiko.

Additional information

The work was financially supported by the Federal State Unitary Enterprise “RFYaTs-VNIIEF” (Contract No. 13058-12) and by the Russian Foundation for Basic Research (Projects Nos. 13-01-00270 and 13-01-00350).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiko, A.V., Nechepurenko, Y.M., Zhuchkov, R.N. et al. Laminar-turbulent transition prediction module for LOGOS package. Thermophys. Aeromech. 21, 191–210 (2014). https://doi.org/10.1134/S0869864314020061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864314020061

Key words

Navigation