Skip to main content
Log in

Regular waves on vertical falling rivulets at different wetting contact angles

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

Results of experimental investigation of regular wave conditions for straight rivulets falling down a vertical plane are presented. Field measurements of the local thickness of rivulets were carried out with the help of laser-induced fluorescence. Data on the wave structure of rivulets is shown in a wide range of frequencies of regular waves for different Reynolds numbers of the flow and contact wetting angles. It was observed for all studied wave conditions that transverse width of rivulets and wetting angles are insensitive to the phase of propagating waves. Moreover, it was found that the wave structure of rivulets differs significantly for the cases of low and high values of the contact angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.H. Eres, L.W. Schwartz, and R.V. Roy, Fingering phenomena for driven coating films, Phys. Fluids, 2000, Vol. 12, No. 6, P. 1278–1295.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. M.F.G. Johnson, R.A. Schluter, M.J. Miksis, and S.G. Bankoff, Experimental study of rivulet formation on an inclined plate by fluorescent imaging, J. Fluid Mech., 1999, Vol. 394, P. 339–354.

    Article  MATH  ADS  Google Scholar 

  3. P.G. Gennes, Wetting, statics and dynamics, Rev. Modern Phys., 1996, Vol. 57, No. 3, P. 827–863.

    Article  Google Scholar 

  4. J.S. Marshall and S. Wang, Contact-line fingering and rivulet formation in the presence of surface contamination, Computers & Fluids, 2005, Vol. 34, No. 6, P. 664–683.

    Article  MATH  Google Scholar 

  5. L.M. Schwarts, Viscous flows down an inclined plane, instability and finger formation, Phys. Fluids, 1989, Vol. 1, No. 3, P. 443–445.

    Article  ADS  Google Scholar 

  6. L. Kondic and J. Diez, Pattern formation in the flow of thin films down an incline: Constant flux configuration, Ibid., 2001, Vol. 13, No. 11, P. 3168–3184.

    Article  ADS  Google Scholar 

  7. J. Diez, A.G. Gonzalez, J. Gommba, R. Gratton, and L. Kondic, Unstable spreading of a fluid filament on a vertical plane. Experiments and simulations, Physica D, 2005, Vol. 209, P 49-61.

  8. Y. Ye and H.-C. Chang, A spectral theory for fingering on a prewetted plane, Phys. Fluids, 1999, Vol. 11, No. 9, P. 2494–2515.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. N. Le. Grand-Piteira, A. Daerr, and L. Limat, Meandering rivulets on a plane: a simple balance between inertia and capillarity? Phys. Rev. Lett., 2006, Vol. 96, P. 254–503.

    Google Scholar 

  10. J.H. Snoeijer, E. Rio, N. Le Grand, and L. Limat, Self-similar flow and contact line geometry at the rear of cornered drops, Phys. Fluids, 2005, Vol. 17, P. 072101–072112.

    Article  MathSciNet  ADS  Google Scholar 

  11. S.V. Alekseenko, P.I. Geshev, and P.A. Kuibin, Free-boundary fluid flow on an inclined cylinder, Phys. Dokl., 1997, Vol. 42, No. 5, P. 269–272.

    MATH  MathSciNet  ADS  Google Scholar 

  12. C.A. Perazzo and J. Gratton, Navier — Stokes solutions for parallel flow in rivulets on an inclined plane, J. Fluid Mech., 2004, Vol. 507, P. 367–379.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. G.D. Towell and L.B. Rothfeld, Hydrodynamics of rivulet flow, AIChE J., 1966, Vol. 12, P. 972–980.

    Article  Google Scholar 

  14. H. Kim, J. Kim, and B.H. Kang, Meandering instability of a rivulet, J. Fluid. Mech., 2004, Vol. 498, P. 245–256.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. B. Birnir, K. Mertens, V. Putkaradze, and P. Vorobieff, Meandering fluid streams in the presence of flow-rate fluctuations, Phys. Rev. Lett., 2008, Vol. 101, P. 114501.

    Article  ADS  Google Scholar 

  16. P. Schmuki and M. Laso, On the stability of rivulet flow, J. Fluid Mech., 1990, Vol. 215, P. 125–143.

    Article  ADS  Google Scholar 

  17. S.K. Wilson and B.R. Duffy, A rivulet of perfectly wetting fluid draining steadily down a slowly varying substrate, J. Appl. Math., 2005, Vol. 70, P. 293–322.

    MATH  MathSciNet  Google Scholar 

  18. T.G. Myers, H.X. Liang, and B. Wetton, The stability and flow of a rivulet driven by interfacial shear and gravity, Inter. J. Nonlinear Mech., 2004, Vol. 39, P. 1239–1249.

    Article  MATH  Google Scholar 

  19. D. Holland, B.R. Duffy, and S.K. Wilson, Thermocapillary effects on a thin viscous rivulet draining steadily down a uniformly heated or cooled slowly varying substrate, J. Fluid Mech., 2001, Vol. 441, P. 195–221.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. S.K. Wilson and B.R. Duffy, On the gravity-driven draining of a rivulet of fluid with temperature-dependent viscosity down a uniformly heated or cooled substrate, J. Engng. Math., 2002, Vol. 42, P. 359–372.

    Article  MATH  MathSciNet  Google Scholar 

  21. S.V. Alekseenko, D.M. Markovich, and S.I. Shtork, Wave flow of rivulets on the outer surface of an inclined cylinder, Phys. Fluids, 1996, Vol. 8, P. 3288–3299.

    Article  ADS  Google Scholar 

  22. S.V. Alekseenko, A.V. Bobylev, and D.M. Markovich, Rivulet flow on the outer surface of an inclined cylinder, J. Engng. Thermophys., 2008, Vol. 17, No. 4, P. 259–272.

    Article  Google Scholar 

  23. S.V. Alekseenko, V.A. Antipin, A.V. Bobylev, and D.M. Markovich, Application of PIV to velocity measurements in a liquid film flowing down an inclined cylinder, Exp. Fluids, 2007, Vol. 43, No. 2–3, P. 197–207.

    Article  Google Scholar 

  24. P.A. Kuibin, An asymptotic description of the rivulet flow along an inclined cylinder, J. Engng Thermophys., 1996, Vol. 6, P. 33–45.

    Google Scholar 

  25. P.I. Geshev and A.A. Cherepanov, Stability of a laminar rivulet liquid flow in a cylindrical duct in the approximation of one-dimensional waves, J. Appl. Mech. Tech. Phys., 1999, Vol. 40, No. 3, P. 439–444.

    Article  ADS  Google Scholar 

  26. E.A. Chinnov, S.M. Kharlamov, A.D. Nazarov, E.E. Sokolov, A.F. Serov, D.M. Markovich, and O.A. Kabov, Integrated measurement of the wave characteristics of heated film of liquid by the capacitance and fluorescence methods, High Temperature, 2008, Vol. 46, No. 5, P. 647–653.

    Article  Google Scholar 

  27. B. Scheid, S. Kalliadasis, C. Ruyer-Quil, and P. Colinet, Interaction of three-dimensional hydrodynamic and thermocapillary instabilities in film flows, Phys. Rev. E., 2008, Vol. 78, No. 6, P. 066311.

    Article  ADS  Google Scholar 

  28. J. Liu, J. D. Paul, and J.P. Gollub, Measurement of the primary instabilities of film flow, J. Fluid Mech., 1993, Vol. 250, P. 69–101.

    Article  ADS  Google Scholar 

  29. S.V. Alekseenko, V.E. Nakoryakov, and B.G. Pokusaev, Wave Flow of Liquid Films, Begell House, New York, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Bobylev.

Additional information

The work was financially supported by the Federal Targeted Programme “Scientific and Scientific-Pedagogical Personnel of Innovative Russia in 2009–2013”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseenko, S.V., Bobylev, A.V., Guzanov, V.V. et al. Regular waves on vertical falling rivulets at different wetting contact angles. Thermophys. Aeromech. 17, 345–357 (2010). https://doi.org/10.1134/S0869864310030054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864310030054

Key words

Navigation