Skip to main content
Log in

Thermal conductivity of aqueous solutions of salts for high parameters of state

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

New generalized formulas for calculation of thermal conductivity of aqueous solutions of binary and multicomponent inorganic substances under high values of state parameters were derived. New values of thermal conductivity were calculated for aqueous solutions of salts within the ranges of temperatures of 293–473 K. concentrations of 0–25 mass % and pressures P s of 100 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International tables and equations for thermal conductivity of water and steam, Reference Source, Thermal Engng., 1980, No. 4, P. 70–74.

  2. Skeleton table on specific volume and enthalpy of water and steam, Reference Source, Thermal Engng., 1987, No. 3, P. 71–77.

  3. Y. Nagasaka, H. Okada, J. Suzuki, and A. Nagashima, Absolute measurements of the thermal conductivity of aqueous NaCl solutions at pressures up to 40 MPa, Ber. Bunsenges. Phys. Chem., 1983, Vol. 87, P. 859–866.

    Google Scholar 

  4. K.M. Abdullaev, V.S. Eldarov, I.I. Vakhabov, and D.Sh. Zulfagarov, Thermal conductivity of aqueous solutions of electrolytes, Izv. vuzov, Neft i Gaz, 1992, No. 3–4, P. 61–63.

  5. K.M. Abdullaev, V.S. Eldarov, I.I. Vakhabov, and D.S. Gafurov, The thermal conductivity of three-component aqueous solutions of NaCl and CaCl2 in a wide range of state variables, Thermal Engineering, 1997, Vol. 44, No. 5, P. 406–410.

    Google Scholar 

  6. Y.A. Ganyiev, M.O. Musoyan, Y.L. Rastorguyev, and B.A. Grigoryev, The thermal conductivity of water and aqueous solutions of NaCl in the range of temperatures 20–400°C and pressures up to 100 MPa, Proc. 11th Intern. Conf., September 4–8, 1989, Prague, Czechoslovakia, Prague, 1989, P. 76–78.

    Google Scholar 

  7. V.M. Valyashko, K.G. Kravchuk, M.A. Urusova et al., Thermal physical properties of NaCl + H2O system in a wide range of state parameters, Reviews on thermal-physical properties of substances, Instit. High Temperatures, Moscow, 1986 No. 4 (60), P. 3–112.

    Google Scholar 

  8. U.B. Magomedov, Thermal conductivity of aqueous solutions of salts at high parameters, in: Geothermometry, Geologic and Thermal-Physical problems, DSC RAS. Makhachkala, 1992, P. 168–187.

    Google Scholar 

  9. V.N. Gilyarov, S.V. Tsay, L.B. Puchkov, and V.I. Zarembo, PVTX-data for KCl-H2O system in the range of temperatures from 298.15 to 573.15 K and pressures from equilibrium pressure to 1000 bars, Russ. J. Appl. Chem., 1987, No. 1, P. 44–47.

  10. K.M. Abdullaev, V.S. Eldarov, Studying thermal conductivity of aqueous solutions of sodium, potassium and silver nitrides, Izv. vuzov, Energetika, 1988, No. 6, P. 78–89.

  11. G.A. Safronov, Yu.G. Kosolap, and Yu.L. Rastorguev, Experimental examination of thermal conductivity coefficient for binary solutions of electrolytes, VINITI, Moscow, Deposited Paper No. 4262-B-90, 26.07.90, 1990.

  12. R.I. Pepinov and G.M. Guseinov, Experimental investigation of thermal conductivity of aqueous solutions of potassium chloride at high temperatures, High Temperatures, 1991, Vol. 29, No. 3.

  13. V.S. Eldarov, I.I. Vakhabov, S.Sh. Babaeva et al., Analysis of investigations on thermal conductivity of multicomponent aqueous solutions of salts, Izv. vuzov. Neft i Gaz, 1992, No. 9–10, P. 59–62.

  14. U.B. Magomedov, Thermal conductivity of aqueous solutions of salts for high values of state parameters, High Temperatures, 1993, Vol. 31, No. 5.

  15. U.B. Magomedov, Thermal conductivity of aqueous solutions of barium, copper nitrides and sodium iodide, High Temperatures, 1994, Vol. 32, No. 5.

  16. I.M. Abdulagatov and U.B. Magomedov, Measurements of thermal conductivity of aqueous LiCl and LiBr solutions from 293 to 473 K at pressures up to 100 MPa, Ber. Bunsenges. Phys. Chem., 1997, Vol. 101, No. 4, P. 708–711.

    Google Scholar 

  17. U.B. Magomedov, Thermal conductivity of binary and multicomponent aqueous solutions of inorganic substances, High Temperatures, 1998, Vol. 36, No. 1.

  18. U.B. Magomedov, Thermal conductivity of water and its dependency on density for high values of state parameters, Izv. RAN, Energetika, 2002, No. 3, P. 163–165.

  19. U.B. Magomedov, Thermal conductivity of highly mineralized water solutions under high pressures and temperatures, Rep. at Intern. Conf. “Thermal Field of the Earth and Methods of Its Investigations”, Moscow, Russia, 2000, P. 254–258.

  20. U.B. Magomedov, Thermal conductivity of binary and multicomponent aqueous solutions of inorganic substances for high state parameters, High Temperatures, 2001, Vol. 39, No. 2, P. 241–245.

    Google Scholar 

  21. U.B. Magomedov, Thermal conductivity of inorganic substances at high temperatures, pressures, and concentrations, Rep. at Intern. Conf. “Renewable Power Engineering: Problems and Future Trends”, Vol. 2, Makhachkala, 2005, P. 115–123.

    Google Scholar 

  22. VNIITs MV, Properties of Materials and Substances, Tables of Standard Reference Data, Izd-vo standartov, Moscow, 1990, Vol. 1.

    Google Scholar 

  23. A.G. Guseinov, A.I. Iskenderov, A.D. Tairov, R.T. Akbundov, and T.S. Akhundov, Viscosity of aqueous solutions of sodium and potassium fluorides, Izv. vuzov. Neft i Gaz, 1990, No. 11, P. 63–65.

  24. V.S. Eldarov, Thermal conductivity of sodium salt solutions, Russ. J. of Phys. Chem., 1986, Vol. 60, No. 3, P. 603–605.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magomedov, U.B., Alkhasov, A.B. Thermal conductivity of aqueous solutions of salts for high parameters of state. Thermophys. Aeromech. 13, 585–590 (2006). https://doi.org/10.1134/S0869864306040123

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864306040123

Keywords

Navigation