Skip to main content
Log in

Time Constrains and the Tectono-Sedimentary Setting of the Permian Sequence in Israel: Insights from Pleshet-1 and David-1 Boreholes, Western Israel

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

Benthic foraminifera, carbonate microfacies identification, and geochemical analysis of the Permian intervals of Pleshet-1 and David-1 boreholes from western Israel,-allowed a determination of their time frame and tectono-sedimentary relationships, further allowing insights about the nature and regional subsurface expression of the Permian. Carbonate horizons within the mixed lithology successions, yielded foraminifera suggesting the Middle/Late Permian transition. The carbonate microfacies and related stable isotopic profiles indicate a change from siliciclastic marginal marine conditions (Saad Fm.) to fully marine platform conditions (Arqov Fm.) in a gradual marine transgression onto a segmented peneplain, and producing sedimentary facies belts striking SW–NE. A comparison of this work with previous work in southern and eastern Israel suggests that the Permian formations in Israel formed NW to SE diachronistically, by marine transgression during the Middle and the Late Permian, with maximum flooding during the Changhsingian. It appears that although not precisely defined, the regional Middle/Late Permian transition happened during a major marine transgression, characterized by a negative to positive stable isotope shift, and by apparently gradual aridization of the hinterland. The regional onset of sedimentation occurred on a marginally superficially downfaulted northwestward peneplain, subdivided tentatively into four segments with shallow half-graben structures. The three eastern segments ceased their differential movements and maintained uniform northwestward subsidence during the late Wuchiapingian–Changhsingian. The most western fourth segment had differential fault activity through the Triassic and the Jurassic, and is proposed to be placed on a transition to a proximal tectonic necking zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Plate 2.
Plate 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Abbo, A., Avigad, D., and Gerdes, A., The lower crust of the Northern broken edge of Gondwana: Evidence for sediment subduction and syn-Variscan anorogenic imprint from zircon U–Pb–Hf in granulite xenoliths, Gondwana Res., 2018, vol. 64, pp. 84–96.

    Article  Google Scholar 

  2. Abu Saad, L. and Andrews, I.J., A database of stratigraphy information from deep boreholes in Jordan, Amman, Nat. Resour. Authority Report Subsurface Geol. Bull., 1993, vol. 6, no. 181, pp. 1–152.

    Google Scholar 

  3. Al-Youssef, W. and Ayed, H., Evolution of Upper Paleozoic sequences and the application of stratigraphy as a tool for hydrocarbon exploration in Syria, in Egyptian General Petrol. Comp. 11th Explor. Sem., Cairo, 1992, vol. 2, pp. 636–657.

  4. Algeo, T.J., Hannigan, R., Rowe, H., Brookfield, M., Baud, A., Krystyn, L., and Ellwood, B.B., Sequencing events across the Permian–Triassic boundary, Guryul Ravine (Kashmir, India), Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 252, nos. 1–2, pp. 328–346.

    Article  Google Scholar 

  5. Allan, J.R. and Matthews, R.K., Isotope signatures associated with early meteoric diagenesis, Sedimentology, 1982, vol. 29, no. 6, pp. 797–817.

    Article  Google Scholar 

  6. Arefifard, S. and Davydov, V.I., New Permian Aliyak and Kariz Now formations, Alborz Basin, NE Iran: Correlation with the Zagros Mountains and Oman, Geol. J., 2015, vol. 50, no. 6, pp. 811–826.

    Article  Google Scholar 

  7. Baghbani, D., The Permian Sequence in the Abadeh Region, Central Iran, Occasional Publication, Earth Sciences and Resources Institute, University of South Carolina, New Ser. B, 1993, vol. 9, pp. 7–22.

    Google Scholar 

  8. Ben-Menahem, A., Nur, A., and Vered, M., Tectonics, seismicity and structure of the Afro-Eurasian junction—The breaking of an incoherent plate, Phys. Earth Planet. Interior., 1976, vol. 12, no. 1, pp. 1–50.

    Article  Google Scholar 

  9. Bond, D.P., Wignall, P.B., Wang, W., Izon, G., Jiang, H.S., Lai, X.L., Sun, Y.D., Newton, R.J., Shao, L.Y., Védrine, S., and Cope, H., The mid-Capitanian (Middle Permian) mass extinction and carbon isotope record of South China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2010, vol. 292, no. 1–2, pp. 282–294.

    Article  Google Scholar 

  10. Buchbinder, B., Grossowicz, L., Peri, M., Eshet, Y., Rosenfeld, A., Siman-Tov, R., and Druckman, Y., Stratigraphy of the Gevim-1 Borehole, Report GSI/18/98, 1998, pp. 1–15.

  11. Buggisch, W., Krainer, K., Schaffhauser, M., Joachimski, M., and Korte, C., Late Carboniferous to Late Permian carbon isotope stratigraphy: A new record from post-Variscan carbonates from the Southern Alps (Austria and Italy), Palaeogeogr., Palaeoclimatol., Palaeoecol., 2015, vol. 433, pp. 174–190.

    Article  Google Scholar 

  12. Chenin, P., Manatschal, G., Ghienne, J.F., and Chao, P., The syn-rift tectono-stratigraphic record of rifted margins (Part II): A new model to break through the proximal/distal interpretation frontier, Basin Res., 2022, vol. 34, no. 2, pp. 489–532.

    Article  Google Scholar 

  13. Cohen, Z., Flexer, A., and Kaptsan, V., The Pleshet Basin: A newly-discovered link in the peripheral chain of basins of the Arabian Craton, J. Petrol. Geol., 1988, vol. 11, no. 4, pp. 403–414.

    Article  Google Scholar 

  14. Cowie, P.A., Underhill, J.R., Behn, M.D., Lin, J., and Gill, C.E., Spatio-temporal evolution of strain accumulation derived from multi-scale observations of Late Jurassic rifting in the northern North Sea: A critical test of models for lithospheric extension, Earth Planet. Sci. Lett., 2005, vol. 234, nos. 3–4, pp. 401–419.

    Article  Google Scholar 

  15. Druckman, Y., Evidence for Early–Middle Triassic faulting and possible rifting from the Helez Deep Borehole in the coastal plain of Israel, Spec. Publ.—Geol. Soc. London, 1984, vol. 17, no. 1, pp. 203–212.

    Article  Google Scholar 

  16. Druckman, Y., Eshet, Y., Gill, D., Grossowicz, L., Rosenfeld, A., Siman Tov, R., and Weissbrod, T., Stratigraphy of the Bessor-1 Borehole, Report GSI/11/94, 1994, pp. 1–16.

  17. Eshet, Y., Paleozoic–Mesozoic palynology of Israel. I. Palynological aspects of the Permian–Triassic succession in the subsurface of Israel, Israel Geol. Surv. Bull., 1990, vol. 81, pp. 1–57.

    Google Scholar 

  18. Feinstein, S. and Slager, J.I., Evaluation of Potential Source Rocks for Hydrocarbons in the Negev Area, East Mediterranean Oil & Gas LTD, Unpublished Report, 1986.

  19. Gaillot, J. and Vachard, D., The Khuff Formation (Middle East) and time-equivalents in Turkey and South China: Biostratigraphy from Capitanian to Changhsingian times (Permian), new foraminiferal taxa, and palaeogeographical implications, Coloq. Paleontol., 2007, vol. 57, pp. 37–223.

    Google Scholar 

  20. Gardosh, M.A., Garfunkel, Z., Druckman, Y., and Buchbinder, B., Tethyan rifting in the Levant Region and its role in Early Mesozoic crustal evolution, in Evolution of the Levant Margin and Western Arabia Platform Since the Mesozoic, Spec. Publ.—Geol. Soc. London, 2010, vol. 341, pp. 9–36.

    Article  Google Scholar 

  21. Ghaderi, A., Taherpour Khalil Abad, M., Ashouri, A.R., and Korn, D., Permian calcareous algae from the Khachik Formation at the Ali Bashi Mountains, NW of Iran, Arabian J. Geosci., 2016, vol. 9, no. 17, pp. 1–11.

    Article  Google Scholar 

  22. Gvirtzman, G. and Weissbrod, T., The Hercynian geanticline of Helez and the Late Palaeozoic history of the Levant, Spec. Publ.—Geol. Soc. London, 1984, vol. 17, no. 1, pp. 177–186.

    Article  Google Scholar 

  23. Hance, L., Hou, H., and Vachard, D., Upper Famennian to Visean Foraminifers and Some Carbonate Microproblematica from South China—Hunan, Guangxi and Guizhou, Beijing: Beijing Geol. Publ. House, 2011.

    Google Scholar 

  24. Isozaki, Y., Guadalupian–Lopingian boundary event in mid-Panthalassa: Correlation of accreted deep-sea chert and mid-oceanic atoll carbonate, in Proc. XV Int. Congr. on Carboniferous and Permian Stratigraphy, 2003, pp. 111–124.

  25. Jenny-Deshusses, C., Paraglobivalvulina mira REITLINGER (Foraminifère): Précisions morphologiques et application stratigraphique dans le Permien supérieur d’Iran, Rev. Micropaléontol., 1983, vol. 25, no. 4, pp. 265–272.

    Google Scholar 

  26. Jin, Y., Wang, Y., Henderson, C., Wardlaw, B.R., Shen, S., and Cao, C., The global boundary stratotype section and point (GSSP) for the base of Changhsingian stage (Upper Permian), Episodes J. Int. Geosci., 2006a, vol. 29, no. 3, pp. 175–182.

    Article  Google Scholar 

  27. Jin, Y., Shen, S., Henderson, C.M., Wang, X., Wang, W., Wang, Y., Cao, C., and Shang, Q., The Global Stratotype Section and Point (GSSP) for the boundary between the Capitanian and Wuchiapingian stage (Permian), Episodes J. Int. Geosci., 2006b, vol. 29, no. 4, pp. 253–262.

    Article  Google Scholar 

  28. Jost, A.B., Mundil, R., He, B., Brown, S.T., Altiner, D., Sun, Y., DePaolo, D.J., and Payne, J.L., Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes, Earth Planet. Sci. Lett., 2014, vol. 396, pp. 201–212.

    Article  Google Scholar 

  29. Kobayashi, F., Tethyan uppermost Permian (Dzhulfian and Dorashamian) foraminiferal faunas and their paleogeographic and tectonic implications, Palaeogeogr., Palaeoclimatol., Palaeoecol., 1999, vol. 150, nos. 3–4, pp. 279–307.

    Article  Google Scholar 

  30. Kobayashi, F., Late Permian foraminifers from the limestone block in the Southern Chichibu Terrane of west Shikoku, SW Japan, J. Paleontol., 2004, vol. 78, no. 1, pp. 62–70.

    Article  Google Scholar 

  31. Kobayashi, F., Early Late Permian (Wuchiapingian) foraminifers in the Tatsuno area, Hyogo—Late Paleozoic and Early Mesozoic foraminifers of Hyogo, Japan, Part 4, Nature and Human Activities, 2006, vol. 10, pp. 25–33.

    Google Scholar 

  32. Kobayashi, F., Late Permian (Lopingian) foraminifers from the Tsukumi Limestone, southern Chichibu Terrane of eastern Kyushu, Japan, J. Foraminiferal Res., 2013, vol. 43, no. 2, pp. 154–169.

    Article  Google Scholar 

  33. Kolodka, C., Vennin, E., Vachard, D., Trocme, V., and Goodarzi, M.H., Timing and progression of the end-Guadalupian crisis in the Fars province (Dalan Formation, Kuh-e Gakhum, Iran) constrained by foraminifers and other carbonate microfossils, Facies, 2012, vol. 58, no. 1, pp. 131–153.

    Article  Google Scholar 

  34. Korngreen, D. and Benjamini, C., Constraints on structural development of the Triassic Levant margin: New borehole data on the epicontinental to deep marine transition in Israel, Tectonophysics, 2011, vol. 591, pp. 3–15.

    Article  Google Scholar 

  35. Korngreen, D. and Zilberman, T., The role of land-marine teleconnections in the tropical proximal Permian-Triassic Marine Zone, Levant Basin, Israel: Insights from stable isotope pairing, Global Planet. Change, 2017, vol. 154, pp. 44–60.

    Article  Google Scholar 

  36. Korngreen, D., Orlov-Labkovsky, O., Bialik, O., and Benjamini, C., The Permian–Triassic transition in the central coastal plain of Israel (North Arabian plate margin), David-1 borehole, Palaios, 2013, vol. 28, no. 8, pp. 491–508.

    Article  Google Scholar 

  37. Kotlyar, G.V., Zakharov, Y.D., Koczyrkevicz, B.V., Kropatcheva, G.S., Rostovtsev, K.O., Chedija, I.O., Vuks, G.P., and Guseva, A., Evolution of the latest Permian Biota. Dzhulfian and Dorashamian Regional Stages in the USSR, Leningrad: Leningrad Departm. Publ. House “Nauka,” 1983, pp. 1–185.

  38. Kotlyar, G.V., Baud, A., Pronina, G.P., Zakharov, Y.D., Vuks, V.J., Nestell, M.K., Belyaeva G.V., and Marcoux J., Permian and Triassic exotic limestone blocks of the Crimea, in Peri-Tethys: Stratigraphic Correlations 3, Geodiversitas, 1999, vol. 21, no. 3, pp. 299–323.

    Google Scholar 

  39. Lai, X., Wang, W., Wignall, P.B., Bond, D.P.G., Jiang, H., Ali, J.R., John, E.H., and Sun, Y. Palaeoenvironmental change during the end-Guadalupian (Permian) mass extinction in Sichuan, China, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2008, vol. 269, nos. 1–2, pp. 78–93.

    Article  Google Scholar 

  40. Leven, E.J., The Midian Stage of the Permian and its boundaries, Stratigr. Geol. Correl., 1996, vol. 4, no. 6, pp. 540–551.

    Google Scholar 

  41. Leven, E.J., Permian fusulinids assemblages and stratigraphy of Transcaucasia, Riv. Ital. Paleontol. Stratigr., 1998, vol. 104, pp. 299–328.

    Google Scholar 

  42. Leven, E.J., Permian stratigraphy and fusulinids of the Tethys, Riv. Ital. Paleontol. Stratigr., 2003, vol. 109, no. 2, pp. 399–415, https://riviste.unimi.it/index.php/RIPS/article/view/5514

    Google Scholar 

  43. Leven, E.J., The Upper Carboniferous (Pennsylvanian) and Permian of the Western Tethys: fusulinids, stratigraphy, biogeography: Fusulinids, stratigraphy, paleogeography, in Tr. GIN RAN (Proc. Geol. Inst. Russ. Acad. Sci.), 2009, Vol. 590, pp. 1–237.

  44. Loeblich, A.R. and Tappan, H., Foraminiferal Genera and Their Classification, N.Y.: Van Nostrand Reinhold Comp., 1987, vol. 1, pp. 1–970, vol. 2, pp. 1–212.

    Google Scholar 

  45. Loeblich, A.R., Tappan, H., Takayanagi, Y., and Saito, T., Studies in benthic foraminifera, BENTHOS, 1992, vol. 90, pp. 93–102.

    Google Scholar 

  46. Luo, G., Wang, Y., Yang, H., Algeo, T.J., Kump, L.R., Huang, J., and Xie, S., Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian–Triassic crisis interval, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2011, vol. 299, nos. 1–2, pp. 70–82.

    Article  Google Scholar 

  47. Lüning, S., Craig, J., Loydell, D.K., Štorch, P., and Fitches, B., Lower Silurian hot shales in North Africa and Arabia: Regional distribution and depositional model, Earth-Sci. Rev., 2000, vol. 49, nos. 1–4, pp. 121–200.

    Article  Google Scholar 

  48. Meiler, M., Reshef, M., and Shulman, H., Seismic depth-domain stratigraphic classification of the Golan Heights, central Dead Sea Fault, Tectonophysics, 2011, vol. 510, nos. 3–4, pp. 354–369.

    Article  Google Scholar 

  49. Mikhalevich, V.I., The macrosystem of the foraminifera, Izv. Ross. Akad. Nauk, Ser. Biol., 1998, vol. 2, pp. 266–271.

    Google Scholar 

  50. Mikhalevich, V.I., On the heterogeneity of the former Textulariina (Foraminifera), in Proc. Sixth Int. Workshop on Agglutinated Foraminifera, Grzybowski Foundation Spec. Publ., 2004, vol. 8, pp. 317–349.

  51. Miyahigashi, A., Ueno, K., and Charoentitirat, T., Late Permian (Lopingian) foraminifers from the Doi Chiang Dao Limestone in the Inthanon Zone of Northern Thailand, , 2009, vol. 30 (S1), pp. 40–43.

  52. Mohtat-Aghai, P. and Vachard, D., Late Permian foraminiferal assemblages from the Hambast Region (Central Iran) and their extinctions, Rev. Española Micropaleontol., 2005, vol. 37, pp. 205–227.

    Google Scholar 

  53. Murray, J.W., Ecology and Palaeoecology of Benthic Foraminifera, Routledge, 2014.

    Book  Google Scholar 

  54. Orlov-Labkovsky O., Permian fusulinids (Foraminifera) of the subsurface of Israel: Taxonomy and biostratigraphy, Rev. Española Micropaleontol., 2004, vol. 36, pp. 389–406.

    Google Scholar 

  55. Pawlowski, J., Holzmann, M., and Tyszka, J., New supraordinal classification of foraminifera: Molecules meet morphology, Mar. Micropaleontol., 2013, vol. 100, pp. 1–10.

    Article  Google Scholar 

  56. Pronina, G.P., The Late Permian smaller foraminiferes of Transcaucasus, Rev. Paleobiolog., 2, BENTHOS, 1988, vol. 86, pp. 89–96.

    Google Scholar 

  57. Pronina, G.P., Middle and Late Permian Foraminifera from exotic limestone blocks of the Alma river basin, Crimea, in Late Paleozoic Foraminifera: Their Biostratigraphy, Evolution, and Paleoecology and the Mid-Carboniferous Boundary, Cushman Foundation, 1997, pp. 111–114.

  58. Pronina-Nestell, G.P. and Nestell, M.K., Late Changhsingian foraminifers of the northwestern Caucasus, Micropaleontology, 2001, vol. 47, no. 3, pp. 205–234.

    Article  Google Scholar 

  59. Rauser-Chernousova, D.M., Bensh, F.R., Vdovenko, M.V., Gibshman, N.B., Leven, E.J., Lipina, O.D., Reitlinger, E.A., Solovieva, M.N., and Chedia, I.O., Reference-Book on the Systematic of Paleozoic Foraminifera (Endotyroida, Fusulinoida), Moscow: NAUKA, 1996 [in Russian].

    Google Scholar 

  60. Rahman, N.U., Song, H., Benzhong, X., Rehman, S.U., Rehman, G., Majid, A., Iqbal J., and Hussain, G., Middle–Late Permian and Early Triassic foraminiferal assemblages in the Western Salt Range, Pakistan, Rudarsko-Geološko-Naftni Zb., 2022, vol. 37, no. 3, https://doi.org/10.17794/rgn.2022.3.13

  61. Richoz, S., Krystyn, L., Baud, A., Brandner, R., Horacek, M., and Mohtat-Aghai, P., Permian–Triassic boundary interval in the Middle East (Iran and N. Oman): Progressive environmental change from detailed carbonate carbon isotope marine curve and sedimentary evolution, J. Asian Earth Sci., 2010, vol. 39, no. 4, pp. 236–253.

    Article  Google Scholar 

  62. Ross, C.A. and Ross, J.R., Late Paleozoic sea levels and depositional sequences, in Spec. Publ.—Cushman Found. Foraminiferal Res., 1987, pp. 137–149.

    Google Scholar 

  63. Ross, C.A. and Ross, J.R., Foraminiferal zonation of late Paleozoic depositional sequences, Mar. Micropaleontol., 1995, vol. 26, nos. 1–4, pp. 469–478.

    Article  Google Scholar 

  64. Rui, L., Upper Permian fusulinids from western Guizhou, Acta Palaeontol. Sinica, 1979, vol. 18, no. 3, pp. 271–297.

    Google Scholar 

  65. Sapin, F., Ringenbach, J.C., and Clerc, C., Rifted margins classification and forcing parameters, Sci. Reports, 2021, vol. 11, no. 1, pp. 1–17.

    Google Scholar 

  66. Sahakyan, L., Baud, A., Grigoryan, A., Friesenbichler, E., and Richoz, S., The Permian–Triassic transition in Southern Armenia, in 5th IGCP 630 Int. Conference and Field Workshop, 2017, pp. 37–48.

  67. Salhov, S., The Stratigraphy of the Precambrian, Paleozoic, Triassic and Jurassic Sedimentary Sequences in Israel, R-eport 89/1, Oil Exploration (Investments) LTD, 1989, pp. 1–92.

  68. Shahinfar, S., Yousefi Yeganeh, B., Arefifard, S., Vachard, D., and Payne, J.L., Refined foraminiferal biostratigraphy of upper Wordian, Capitanian, and Wuchiapingian strata in Hambast Valley, Abadeh region (Iran), and paleobiogeographic implications, Geol. J., 2020, vol. 55, no. 9, pp. 6255–6279.

    Article  Google Scholar 

  69. Sharland, P.R., Casey, D.M., Davies, R.B., Simmons, M.D., and Sutcliffe, O.E., Arabian plate sequence stratigraphy–revisions to SP2, GeoArabia, 2004, vol. 9, no. 1, 199–214.

    Article  Google Scholar 

  70. Sheng, J.C., Permian fusulinids of Kwangsi, Kueichow and Szechuan, Palaeontol. Sinica, New Ser. B, 1963, pp. 1–247.

    Google Scholar 

  71. Song, H., Tong, J., and Chen, Z.Q., Two episodes of foraminiferal extinction near the Permian–Triassic boundary at the Meishan section, South China, Austral. J. Earth Sci., 2009, vol. 56, no. 6, pp. 765–773.

    Article  Google Scholar 

  72. Stanley, S.M. and Yang, X., A double mass extinction at the end of the Paleozoic Era, Science, 1994, vol. 266, no. 5189, pp. 1340–1344.

    Article  Google Scholar 

  73. Stephenson, M.H. and Korngreen, D., Palynological correlation of the Arqov and Saad formations of the Negev, Israel, with the Umm Irna Formation of the eastern Dead Sea, Jordan, Rev. Palaeobot. Palynol., 2020, vol. 274. https://doi.org/10.1016/j.revpalbo.2019.104153

  74. Stephenson, M.H. and Korngreen, D., Palynology of the Permian of the Makhtesh Qatan-2, Ramon-1 and Boqer-1 boreholes Arqov Formation, Negev, Israel, Riv. Italiana Paleontol. Stratigr., 2021, vol. 127, no. 3, pp. 655–672.

    Google Scholar 

  75. Taraz, H., Golshani, F., Nakazawa, K., Shimizu, D., Bando, Y., Ishii, K.I., Murata, M., Okimura, Y., Sakagami, S., Nakamura, K., and Tokuoka, T., The Permian and the Lower Triassic systems in Abadeh Region, Central Iran, Mem. Faculty of Science, Kyoto Univ., Ser. Geol. Mineral., 1981, vol. 47, no. 2, pp. 61–133.

    Google Scholar 

  76. Turhan, N., Okuyucu, C., and Göncüoğlu, M.C., Autochthonous Upper Permian (Midian) carbonates in the western Sakarya composite terrane, Geyve area, Turkey: Preliminary data, Turkish J. Earth Sci., 2004, vol. 13, no. 2, pp. 215–229.

    Google Scholar 

  77. Ueno, K. and Sakagami, S., Late Permian fusulinacean fauna of Doi Pha Phlung, north Thailand, in Trans. Proc. Paleontol. Soc. Japan, New Ser., 1991, vol. 164, pp. 928–943.

  78. Vachard, D., Pille, L., and Gaillot, J., Palaeozoic Foraminifera: Systematics, palaeoecology, and responses to global changes, Rev. Micropaléontol., 2010, vol. 53, no. 4, pp. 209–254.

    Article  Google Scholar 

  79. Vdovenko, M.V., Rauser-Chernoussova, D.M., Reitlinger, E.A., and Sabirov, A.A., Reference Book on the Systematic of Paleozoic Smaller Foraminifera, Moscow: Nauka, 1993 [in Russian].

    Google Scholar 

  80. Weissbrod, T., The Paleozoic of Israel and Adjacent Countries (lithostratigraphc study), Unpublished Ph.D. Thesis, Hebrew: Hebrew Univ. Press, Jerusalem, 1981.

  81. Wu, J., Ding, Y., Ye, B., Yang, Q., Zhang, X., and Wang, J., Spatio-temporal variation of stable isotopes in precipitation in the Heihe River Basin, Northwestern China, Environ. Earth Sci., 2010, vol. 61, no. 6, pp. 1123–1134.

    Article  Google Scholar 

  82. Xie, S., Pancost, R.D., Huang, J., Wignall, P.B., Yu, J., Tang, X., Chen, L., Huang, X., and Lai, X., Changes in the global carbon cycle occurred as two episodes during the Permian–Triassic crisis, Geology, 2007, vol. 35, no. 12, pp. 1083–1086.

    Article  Google Scholar 

  83. Yin, H., Feng, Q., Lai, X., Baud, A., and Tong, J. The protracted Permo–Triassic crisis and multi-episode extinction around the Permian–Triassic boundary, Global Planet. Change, 2007, vol. 55, nos. 1–3, pp. 1–20.

    Article  Google Scholar 

  84. Zakharov, Y.D., Biakov, A.C., and Horacek, M., Global correlation of basal Triassic layers in the light of the first carbon-isotope data on the Permian–Triassic boundary in Northeast Asia, Russ. J. Pacific Geol., 2014, vol. 8, no. 1, pp. 1–17.

    Article  Google Scholar 

  85. Zhang, Z., Wang, Y., and Zheng, Q.F., Middle Permian smaller foraminifers from the Maokou formation at the Tieqiao section, Guangxi, South China, Palaeoworld, 2015, vol. 24, no. 3, pp. 263–276.

    Article  Google Scholar 

  86. Zhang, Y.C. and Wang, Y., Permian fusuline biostratigraphy, Spec. Publ.—Geol. Soc. London, 2018, vol. 450, no. 1, pp. 253–288.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Special thanks are due to Prof. Tamar Dayan, the Chair of the Steinhardt Museum of Natural History and National Research Center at the Tel Aviv University. The authors wish to express deep appreciation to Prof. Yi-Chun Zhang, Prof. Yuri D. Zakharov, Dr. T. Filimonova, Dr. T.B. Leonova and Dr. Marina Bylinskaya, for reading the manuscript. Their comments greatly improved it.

Funding

This work was funded by the Israeli Ministry of Infrastructures, Water and Energy, project no. 213-17-023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Korngreen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Reviewers Т.V. Filimonova, T.B. Leonova, and Yi-Chun Zhang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korngreen, D., Orlov-Labkovsky, O., Zilberman, T. et al. Time Constrains and the Tectono-Sedimentary Setting of the Permian Sequence in Israel: Insights from Pleshet-1 and David-1 Boreholes, Western Israel. Stratigr. Geol. Correl. 31, 571–592 (2023). https://doi.org/10.1134/S0869593823060047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593823060047

Keywords:

Navigation