Skip to main content
Log in

Assembly and Breakup of Rodinia (Some results of IGCP project 440)

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

The principal results of project 440 “Assembly and Breakup of Rodinia” of the International Geological Correlation Programme (IGCP) are reviewed in this work. A map of that supercontinent compiled using geological and paleomagnetic data describes global paleogeography 900 Ma ago. The assembly of Rodinia, which comprised most of Precambrian continental blocks, lasted ca. 400 m.y. (from 1300 to 900 Ma). Its breakup presumably triggered by mantle superplume took place between 830 and 650 Ma. The correlation between tectonic events in different continental blocks is considered. Some problems concerning the Rodinia reconstruction and history, e.g., the slow growth of juvenile crust and effects of mantle-plume events during the amalgamation period and of glaciations at the breakup time, are discussed. The latter caused changes in the biosphere and climate, whereas postglacial periods stimulated progress in biota evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. R. Bekker, V. Z. Negrutsa, and N. I. Poleva, “Age of Glauconite Horizons and the Hyperborean Upper Boundary in Eastern Part of the Baltic Shield,” Dokl. Akad. Nauk SSSR 193, 1123–1126 (1970).

    Google Scholar 

  2. U. K. Bhui, P. Sengupta, and P. Sengupta, “Phase Relations in Mafic Dykes and Their Host Rocks from Kondapalle, Andhra Pradesh, India: Implications for the Time-Depth Trajectory of the Palaeoproterozoic (Late Archaean?) Granulites from Southern Eastern Ghats Belt,” Precambrian Res. 156, 153–174 (2007).

    Article  Google Scholar 

  3. B. Bingen, D. Demaiffe, and O. van Breemen, “The 616 Ma Old Egersund Basaltic Dike Swarm, SW Norway, and Late Neoproterozoic Opening of the Iapetus Ocean,” J. Geol. 106, 565–574 (1998).

    Article  Google Scholar 

  4. B. Bingen, O. Skar, M. Marker, et al., “Timing of Continental Building in the Sveconorwegian Orogen, SW Scandinavia,” Norwegian J. Geol. 85, 87–116 (2005).

    Google Scholar 

  5. W. Bleeker, “The late Archean Record: A Puzzle in ca. 35 Pieces,” Lithos 71(2–4), 99–134 (2003).

    Article  Google Scholar 

  6. S. V. Bogdanova, B. Bingen, R. Gorbatschev, et al., “The East European Craton (Baltica) before and during the Assembly of Rodinia,” Precambrian Res. 160(1–2), 23–45 (2008).

    Article  Google Scholar 

  7. M. E. Brookfield, “Neoproterozoic Laurentia-Australia Fit,” J. Geol. 21, 683–686 (1993).

    Article  Google Scholar 

  8. P. A. Cawood, P. G. A. McCausland, and G. R. Dunning, “Opening Iapetus: constraints from the Laurentian margin in Newfoundland,” Bull. Geol. Soc. Am. 113, 443–453 (2001).

    Article  Google Scholar 

  9. P. A. Cawood and S. A. Pisarevsky, “Was Baltica Right-Way-Up or Upside-Down in the Neoproterozoic?” J. Geol. Soc. London 163, 1–7 (2006).

    Article  Google Scholar 

  10. N. M. Chumakov, “Periodicity of Periodicity of Major Glaciations Events and Their Correlation with Endogenic Activity of the Earth,” Dokl. Akad. Nauk 367(5), 656–659 (2001) [Dokl. 379 (5), 507–510 (2001)].

    Google Scholar 

  11. D. J. Clark, B. J. Hensen, and P. D. Kinny, “Geochronological Constraints for a Two-Stage History of the Albany-Fraser Orogen, Western Australia,” Precambrian Res. 102(3–4), 155–183 (2000).

    Article  Google Scholar 

  12. L. R. Cocks and T. H. Torsvik, “Baltica from the Late Precambrian to Mid-Palaeozoic Times: the Gain and Loss of a Terrane’s Identity,” Earth Sci. Rev. London 72(1–2), 39–66 (2005).

    Article  Google Scholar 

  13. A. S. Collins, “Structure and Age of the Northern Leeuwin Complex, Western Australia: Constraints from Field Mapping and U-Pb Isotopic Analysis,” Australian J. Earth Sci. 50, 585–599 (2003).

    Article  Google Scholar 

  14. K. C. Condie, “Episodic Continental Growth Models: Afterthoughts and Extensions,” Tectonophysics 322(1–2), 153–162 (2000).

    Article  Google Scholar 

  15. K. C. Condie, “Continental Growth during Formation of Rodinia at 1.35−0.9 Ga,” Gondwana Res. 4, 5–16 (2001a).

    Article  Google Scholar 

  16. K. C. Condie, Mantle Plumes and Their Record in Earth History (University Press, Cambridge, 2001b).

    Google Scholar 

  17. K. C. Condie, “The Supercontinent Cycle: Are Two Patterns of Cyclicity?” J. African Earth Sci. 15, 179–183 (2002).

    Article  Google Scholar 

  18. K. Condie and J. S. Myers, “Mesoproterozoic Fraser Complex: Geochemical Evidence for Multiple Subduction-Related Sources of Lower Crustal Rocks in the Albany-Fraser Orogen, Western Australia,” Australian J. Earth Sci. 46, 875–882 (1999).

    Article  Google Scholar 

  19. A. S. Collins and S. A. Pisarevsky, “Amalgamating Eastern Gondwana: the Evolution of the Circum-Indian Orogens,” Earth Sci. Rev. 71, 229–270 (2005).

    Article  Google Scholar 

  20. K. Condie and O. M. Rosen, “Laurentia-Siberia Connection Revisited,” J. Geol. 22, 168–170 (1994).

    Article  Google Scholar 

  21. K. C. Condie, D. J. Des Marais, and D. Abbot, “Precambrian Superplumes and Supercontinents: A Record in Black Shales, Carbon Isotopes, and Paleoclimates?” Precambrian Res. 106, 239–260 (2001).

    Article  Google Scholar 

  22. U. G. Cordani, M. S. D. Agrella-Filho, B. B. Brito-Neves, and R. I. F. Trindade, “Tearing up Rodinia: the Neoproterozoic Palaeogeography of South American Cratonic Fragments,” Terra Nova 15(5), 350–359 (2003).

    Article  Google Scholar 

  23. T. J. Crowley and S. K. Baum, “Effect of Decreased Solar Luminosity on Late Precambrian Ice Extent,” J. Geophys. Res. 98, 16723–16732 (1993).

    Article  Google Scholar 

  24. I. W. D. Dalziel, “Pacific Margins of Laurentia and East Antarctica-Australia as a Conjugate Rift Pair: Evidence and Implications for an Eocambrian Supercontinent,” J. Geol. 19(6), 598–601 (1991).

    Article  Google Scholar 

  25. I. W. D. Dalziel, “Neoproterozoic-Paleozoic Geography and Tectonics: Review, Hypothesis, Environmental Speculation,” Bull. Geol. Soc. Am. 109, 16–42 (1997).

    Article  Google Scholar 

  26. I. W. D. Dalziel, S. Mosher, and L. M. Gahagan, “Laurentia-Kalahari Collision and the Assembly of Rodinia,” J. Geol. 108, 499–513 (2000).

    Article  Google Scholar 

  27. A. Davidson, “An overview of Grenville Province Geology. Geology of the Precambrian Superior and Grenville Provinces and Precambrian Fossils in North America,” in The Geology of North America (Geol. Soc. Am., 1998), C-1, pp. 205–270.

  28. A. Davidson, “Late Paleoproterozoic to mid-Neoproterozoic History of Northern Laurentia: An Overview of Central Rodinia,” Precambrian Res. 160, 5–22 (2008).

    Article  Google Scholar 

  29. B. De Waele, S. P. Johnson, and S. A. Pisarevsky, “Palaeoproterozoic to Neoproterozoic Growth and Evolution of the Eastern Congo Craton: Its Role in the Rodinia Puzzle,” Precambrian Res. 160, 127–142 (2008).

    Article  Google Scholar 

  30. C.J. Dobmeier and M.M. Raith, “Crustal Architecture And Evolution of the Eastern Ghats Belt and Adjacent Regions of India,” in Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Ed. by M. Yoshida, B. F. Windley, and S. Dasgupta, Spec. Publ. Geol. Soc. London 206, 145–168 (2003).

  31. R. E. Ernst and K. L. Buchan, “Large Mafic Magmatic Events through Time and Links to Mantle Plume Heads,” in Mantle Plumes: Their Identification Through Time, Ed. by R. E. Ernst and K. L. Buchan, Spec. Pap. Geol. Soc. Am. 352, 483–575 (2001).

  32. R. E. Ernst and K. L. Buchan, “Recognizing Mantle Plumes in the Geological Record,” Ann. Rev. Earth Planet. Sci. 31, 469–523 (2003).

    Article  Google Scholar 

  33. R. E. Ernst, M. T. D. Wingate, K. L. Buchan, and Z. X. Li, “Global Record of 1600-700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents,” Precambrian Res. 160, 159–178 (2008).

    Article  Google Scholar 

  34. D. A. D. Evans, “True Polar Wander and Supercontinents,” Tectonophysics. 362(1–4), 303–320 (2003).

    Article  Google Scholar 

  35. N. Eyles and N. Januszczak, “’Zipper-rift’: A Tectonic Model for Neoproterozoic Glaciations during the Breakup of Rodinia after 750 Ma,” Earth Sci. Rev. 65, 1–73 (2004).

    Article  Google Scholar 

  36. I. C. W. Fitzsimons, “Grenville-Age Basement Provinces in East Antarctica: Evidence for Three Separate Collisional Orogens,” J. Geol. 28, 879–882 (2000).

    Article  Google Scholar 

  37. I. C. W. Fitzsimons, “Proterozoic Basement Provinces of Southern and South-Western Australia, and Their Correlation with Antarctica,” in Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Ed. by M. Yoshida, B. F. Windley, and S. Dasgupta, Spec. Publ. Geol. Soc. London 206, 93–130 (2003).

  38. T. D. Frank, L. C. Kah, and T.W. Lyons, “Changes in Organic Matter Production and Accumulation as a Mechanism for Isotopic Evolution in the Mesoproterozoic Ocean,” Geol. Mag. 140, 397–420 (2003).

    Article  Google Scholar 

  39. H. E. Frimmel, R.E. Zartman, and A. Spath, “The Richtersveld Igneous Complex, South Africa: U-Pb Zircon and Geochemical Evidence for the Beginning of Neoproterozoic Continental Breakup,” J. Geol. 109, 493–508 (2001).

    Article  Google Scholar 

  40. D. G. Gee, “Timanides of Northern Russia,” in Encyclopedia of Geology, Ed. by R. C. Selley, L. R. Cocks, and I. R. Plimer (Elsevier, New York, 2005), Vol. 2, pp. 49–56.

    Google Scholar 

  41. I. L. Gibson, M. N. Sinha, and W. F. Fahrig, “The Geochemistry of the Mackenzie Dyke Swarm, Canada,” Mafic Dyke Swarms. Eds. Halls, C. and Fahrig, W.F. Geol. Assoc. Canada Spec. Pap. 34, 109–121 (1987).

  42. D. P. Gladkochub, M. T. D. Wingate, S. A. Pisarevsky, et al., “Mafic Intrusions in Southwestern Siberia and Implications for a Neoproterozoic Connection with Laurentia,” Precambrian Res. 147, 260–278 (2006).

    Article  Google Scholar 

  43. D. P. Gladkochub, T. V. Donskaya, A. M. Mazukabzov, et al., “Rock Complexes Indicative of Extension in the South Siberian Craton during the Precambrian,” Geol. Geofiz. 48(1), 22–41 (2007a).

    Google Scholar 

  44. D. P. Gladkochub, T. V. Donskaya, A. M. Mazukabzov, et al., “Siberian Craton as a Polygon for Solving Problems of Formation and Breakup of Precambrian Supercontinents,” in Basic Problems of Tectonics, Ed. by Yu. V. Karyakin (GEOS, Moscow, 2007b), pp. 182–185 [in Russian].

    Google Scholar 

  45. R. Gorbatschev, A. Lindh, Z. Solym, et al., “Mafic Dyke Swarms of the Baltic Shield,” in Mafic Dyke Swarms, Ed. by H. C. Halls and W. F. Fahrig, Spec. Pap. Geol. Assoc. Canada 34, 361–372 (1987).

  46. C. F. Gower and T. Krogh, “A U-Pb Geochronological Review of the Proterozoic History of the Eastern Grenville Province,” Can. J. Earth Sci. 39, 795–829 (2002).

    Article  Google Scholar 

  47. P. G. Guese and D. Roberts, “Devonian Ages from 40Ar-39Ar Dating of Plagioclase in Dolerite Dykes, Eastern Varanger Peninsula, North Norway,” NGU Bull. 440, 27–36 (2002).

    Google Scholar 

  48. G. P. Halvorsen, P. F. Hoffman, D. P. Schrag et al., “Towards a Neoproterozoic Composite Carbon Isotope Record,” Bull. Geol. Soc. Am. 117, 1181–1207 (2005).

    Article  Google Scholar 

  49. R. E. Hanson, J. L. Crowley, S. A. Bowring, et al., “Coeval Large-Scale Magmatism in the Kalahari and Laurentian Cratons during Rodinia Assembly,” Science 304, 1126–1129 (2004).

    Article  Google Scholar 

  50. S. S. Harlan, J. W. Geissman, and W. R. Premo, “Paleomagnetism and Geochronology of an Early Proterozoic Quartz Diorite in the Southern Rind River Range, Wyoming, USA,” Tectonophysics 362, 105–122 (2003).

    Article  Google Scholar 

  51. E. H. Hartz and T. H. Torsvik, “Baltica Upside Down: a New Plate Tectonic Model for Rodinia and the Iapetus Ocean,” J. Geol. 30, 255–258 (2002).

    Article  Google Scholar 

  52. J. P. Hodych, R. A. Cox, and J. Koshler, “An Equatorial Laurentia at 550 Ma Confirmed by Grenvillian Inherited Zircons Dates by LAM ICP-MS in the Skinner Cove Volcanics of Western Newfoundland: Implications for Inertial Interchange True Polar Wander,” Precambrian Res. 129, 93–113 (2004).

    Article  Google Scholar 

  53. P. F. Hoffman, “Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?” Science 252, 1409–1412 (1991).

    Article  Google Scholar 

  54. P. F. Hoffman, “Precambrian Geology and Tectonic History of North America,” in The Geology of North America — An overview, Ed. by A. W. Bally and A. R. Palmer (Boulder, Colorado: Geol. Soc. Am., 1989), pp. 447–512.

    Google Scholar 

  55. P. F. Hoffman, “Tectonic Genealogy of North America,” in Earth Structure: An Introduction to Structural Geology and Tectonics, Ed. by B. A. van der Pluijm and S. Marshak (New York, 1997), pp. 459–464.

  56. P. F. Hoffman, A. J. Kaufman, G. P. Halverson, and D. P. A. Schrag, “Neoproterozoic Snowball Earth,” Science 281, 1342–1346 (1998).

    Article  Google Scholar 

  57. J. Jacobs, S. Pisarevsky, R. J. Thomas, and T. Becker, “The Kalahari Craton during the Assembly and Dispersal of Rodinia,” Precambrian Res. 160, 142–159 (2008).

    Article  Google Scholar 

  58. L. C. Kah, T. W. Lyons, and J. T. Chesley, “Geochemistry of a 1.2 Ga Carbonate-Evaporate Succession, Northwestern Baffin and Bylot Islands: Implication for Mesoproterozoic Marine Evolution,” Precambrian Res. 111(1–4), 203–234 (2001).

    Article  Google Scholar 

  59. S. L. Kamo and C. F. Gower, “Note: U-Pb Baddeleyite Dating Clarifies Age of Characteristic Paleomagnetic Remanence of Long Range Dykes, Southeastern,” Atlantic Geol. 30, 259–262 (1994).

    Google Scholar 

  60. K. E. Karlstrom, K.-I. Ahall, S. S. Harlan, et al., “Long Lived (1.8−1.0 Ga) Convergent Orogen in Southern Laurentia, Its Extensions to Australia and Baltica, and Implications for Refining Rodinia,” Precambrian Res. 111, 5–30 (2001).

    Article  Google Scholar 

  61. V. E. Khain, “Large-Scale Cyclicity in the Earth’s Tectonic History and Its Possible Origin,” Geotektonika 6, 3–14 (2000) [Geotectonics 34 (6), 431–441 (2000)].

    Google Scholar 

  62. V. E. Khain, Tectonics of Continents and Oceans (Nauchnyi Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  63. A. N. Khramov and L. E. Sholpo, Paleomagnetism: Principles, Methods and Geological Implications of Paleomagnetology (Nedra, Leningrad, 1967) [in Russian].

    Google Scholar 

  64. J. L. Kirschvink, “Late Proterozoic Low-Latitude Global Glaciations: The Snowball Earth,” in The Proterozoic Biosphere, Ed. by J. W. Schopf and C. Klein (Cambridge University Press, Cambridge, 1992), pp. 51–52.

    Google Scholar 

  65. Climate in Epochs of Great Biospheric Reorganizations, Ed. by M. A. Semikhatov and N. M. Chumakov (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  66. A. Kröner and U. Cordani, “African, Southern Indian and South American Cratons were not Part of the Rodinia Supercontinent: Evidence from Field Relationships and Geochronology,” Tectonophysics 375, 325–352 (2003).

    Article  Google Scholar 

  67. A. Kröner, K. V. W. Kehelpannala, and E. Hegner, “Ca. 750–1100 Ma Magmatic Events and Grenville-Age Deformation in Sri Lanka: Relevance for Rodinia Supercontinent Formation and Dispersal, and Gondwana Amalgamation,” J. Asian Earth Sci. 22, 279–300 (2003).

    Article  Google Scholar 

  68. Z. X. Li, M. Cho, and X. H. Li, “Precambrian Tectonics of East Asia and Relevance to Supercontinent Evolution,” Precambrian Res. 122(1–4), 1–6 (2003).

    Article  Google Scholar 

  69. Z. X. Li, D. A. D. Evans, and S. Zhang, “A 90° Spin on Rodinia: Possible Causal Links between the Neoproterozoic Supercontinent, Superplume, True Polar Wander and Low-Latitude Glaciation,” Earth Planet. Sci Lett. 220(3–4), 409–421 (2004).

    Article  Google Scholar 

  70. Z. X. Li, X.H. Li, P.D. Kinny, and J. Wang, “The Breakup of Rodinia: Did it Start with a Mantle Plume Beneath South China?” Earth Planet. Sci Lett. 173(3), 171–181 (1999).

    Article  Google Scholar 

  71. Z. X. Li, X.H. Li, H. Zhou, and P. D. Kinny, “Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia,” J. Geol. 30(2), 163–166 (2002).

    Article  Google Scholar 

  72. Z. X. Li, L. Zhang, and C. M. Powell, “South China in Rodinia: Part of the Missing Link between Australia-East Antarctica and Laurentia?” J. Geol. 23, 407–410 (1995).

    Article  Google Scholar 

  73. Z. X. Li, S. V. Bogdanova, A. S. Collins, et al., “Assembly, Configuration, and Break-up History of Rodinia: A Synthesis,” Precambrian Res. 160, 179–210 (2008).

    Article  Google Scholar 

  74. L. I. Lobkovsky, A. M. Nikishin, and V. E. Khain, Current Problems of Geotectonics and Geodynamics (Nauchnyi Mir, Moscow, 2004) [in Russian].

    Google Scholar 

  75. S. Lu, H. Li, and C. Zhang, “Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments,” Precambrian Res. 160, 94–108 (2008a).

    Article  Google Scholar 

  76. Lu S., G. Zhao, and H. Wang, “Precambrian Metamorphic Basement and Sedimentary Cover of the North China Craton: A Review,” Precambrian Res. 160, 77–94 (2008b).

    Article  Google Scholar 

  77. M. W. McElhinny and P. L. McFadden, Paleomagnetism. Continents and Oceans (San-Diego Academic Press, London, 2000).

    Google Scholar 

  78. M. A. S. McMenamin and D. L. S. McMenamin, The Emergence of Animals: the Cambrian Breakthrough (Columbia University Press, New York, 1990).

    Google Scholar 

  79. J. Meert, “A Paleomagnetic Analysis of Cambrian True Polar Wander,” Earth Planet. Sci. Lett. 168, 131–144 (1999).

    Article  Google Scholar 

  80. J. G. Meert, “Testing the Neoproterozoic Glacial Models,” Gondwana Res. 11(4), 573–574 (2007).

    Article  Google Scholar 

  81. J. G. Meert and R. Van der Voo, “The Assembly of Gondwana 800-550 Ma,” J. Geodynamics 23, 223–236 (1997).

    Article  Google Scholar 

  82. E. V. Mikhal’skii, “Tectonic Provinces of the Antarctic Shield in Terms of Formation of Precambrian Supercontinents,” in Basic Problems of Geotectonics, Ed. by Yu. V. Karyakin (GEOS, Moscow, 2007), Vol. I, pp. 29–32 [in Russian].

    Google Scholar 

  83. E. M. Moores, “Southwest U.S.-East Antarctic (SWEAT) Connection: A Hypothesis,” J. Geol. 19, 425–428 (1991).

    Article  Google Scholar 

  84. J. B. Murphy, S. A. Pisarevsky, R. D. Nance, and J. D. Keppie, “Neoproterozoic-Early Paleozoic Evolution of Peri-Gondwanan Terranes: Implications for Laurentia-Gondwana Connections,” Int. J. Earth Sci. (Geol. Rundschau) 93, 659 (2004).

    Article  Google Scholar 

  85. G. Murthy, C. Gower, M. Tubrett, and R. Patzold, “Paleomagnetism of Eocambrian Long Range dykes and Double Mer Formation from Labrador, Canada,” Can. J. Earth Sci. 29, 1224–1234 (1992).

    Google Scholar 

  86. J. S. Myers, “Precambrian History of the West Australian Craton and Adjacent Orogens,” Ann. Rev. Earth Planet. Sci. 21, 453–485 (1993).

    Google Scholar 

  87. A. M. Nikishin, P. A. Ziegler, D. Abbott, et al., “Permo-Triassic intraplate Magmatism and Rifting in Eurasia: Implications for Mantle Plumes and Mantle Dynamics,” Tectonophysics 351, 3–39 (2002).

    Article  Google Scholar 

  88. J. K. R. G. Park, “Plate Kinematic History of Baltica during the Middle to Late Proterozoic: A Model,” J. Geol. 20, 725–728 (1992).

    Article  Google Scholar 

  89. A. A. Pavlov, O. B. Toon, A. K. Pavlov, et al., “Passing through a Giant Molecular Cloud: ’snowball’ Glaciations Produced by Interstellar Dust,” Geophys. Res. Lett. 32,L03705, 10.1029/2004GL021890 (2005).

  90. A. Pettersson, D. Cornell, H. F. G. Moen, et al., “Ion-Probe Dating of 1.2 Ga Collision and Crustal Architecture in the Namaqua-Natal Province of Southern Africa,” Precambrian Res. 207, 79–92 (2007).

    Article  Google Scholar 

  91. J. D. A. Piper, “Paleomagnetic Evidence for a Proterozoic Supercontinent,” Phil. Trans. R. Soc. London A280, 469–490 (1976).

    Google Scholar 

  92. S. A. Pisarevsky, “New Edition of the Global Paleomagnetic Database,” EOS Trans. Am. Geophys. Union. 86(17), 170 (2005).

    Article  Google Scholar 

  93. S. A. Pisarevsky and G. Bylund, “Palaeomagnetism of 935 Ma Mafic Dykes in Southern Sweden and Implications for the Sveconorwegian Loop,” Geophys. J. Int. 166, 1095–1104 (2006).

    Article  Google Scholar 

  94. S. A. Pisarevsky and L. B. Harris, “Determination of Magnetic Anisotropy and a ca. 1.2 Ga Palaeomagnetic Pole from the Bremer Bay Area, Albany Mobile Belt, Western Australia,” Aust. J. Earth Sci. 48, 101–112 (2001).

    Article  Google Scholar 

  95. S. A. Pisarevsky and L. M. Natapov, “Siberia and Rodinia,” Tectonophysics 375, 221–245 (2003).

    Article  Google Scholar 

  96. S. Pisarevsky, B. J. Murphy, P. A. Cawood, and A. S. Collins, “Late Neoproterozoic and Early Cambrian Palaeogeography: Models And Problems,” in West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region, Ed. by R. J. Pankhurst, R. A. Trouw, B. B. Brito Neves, and M. J. De Wit, Spec. Publ. Geol. Soc. London 294, 9–31 (2008).

  97. S. Pisarevsky, M. T. D. Wingate, C. M. Powell, et al., “Models of Rodinia Assembly and Fragmentation,” in Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Ed. by M. Yoshida, B. F. Windley, and S. Dasgupta, Spec. Publ. Geol. Soc. London 206, 35–55 (2003).

  98. C. M. Powell and J. G. Meert, “Assembly and Break-up of Rodinia: Introduction to the Special Volume,” Precambrian Res. 110, 1–8 (2001).

    Article  Google Scholar 

  99. C. M. Powell, D. L. Jones, S. Pisarevsky, and M. T. D. Wingate, “Palaeomagnetic Constraints on the Position of the Kalahari Craton in Rodinia,” Precambrian Res. 110, 33–46 (2001).

    Article  Google Scholar 

  100. T. Radhakrishna and J. Mathew, “Late Precambrian (850-800 Ma) Palaeomagnetic Pole for the South Indian Shield from the Harohalli Alkaline Dykes: Geotectonic Implications for Gondwana Reconstructions,” Precambrian Res. 80, 77–87 (1996).

    Article  Google Scholar 

  101. T. Rivers, “Lithotectonic Elements of the Grenville Province: Review and Tectonic Implications,” Precambrian Res. 86, 117–154 (1997).

    Article  Google Scholar 

  102. J. J. W. Rogers and M. Santosh, “Configuration of Columbia, a Mesoproterozoic Supercontinent,” Gondwana Res. 5, 5–22 (2002).

    Article  Google Scholar 

  103. J. J. W. Rogers, “A History of Continents in the Past Three Billion Years,” J. Geol. 104, 91–107 (1996).

    Article  Google Scholar 

  104. O. M. Rozen, A. V. Manakov, and N. N. Zinchuk, Siberian Craton: Formation, Diamond Mineralization (Nauchnyi Mir, Moscow, 2006) [in Russian].

    Google Scholar 

  105. M. A. Semikhatov, A. B. Kuznetsov, I. M. Gorokhov, et al., “Low 87Sr/86Sr Ratio in Seawater of the Grenville and Post-Grenville Time: Determining Factors,” Stratigr. Geol. Korrelyatsiya 10(1), 1–41 (2002) [Stratigr. Geol. Correlation 10 (1), 1–41 (2002)].

    Google Scholar 

  106. S. V. Shipunov and N. M. Chumakov, “Paleomagnetism of Upper Proterozoic Deposits in the Kola Peninsula,” Geotektonika 25, 404–410 (1991).

    Google Scholar 

  107. E. V. Sklyarov, D. P. Gladkochub, A. M. Mazukabzov, et al., “Neoproterozoic Mafic Dike Swarms of the Sharyzhalgai Metamorphic Massif (Southern Siberian Craton),” Precambrian Res. 122, 359–376 (2003).

    Article  Google Scholar 

  108. A. V. Sochava and V. N. Podkovyrov, “The Compositional Evolution of Meso- and Neoproterozoic Carbonate Rocks,” Precambrian Res. 73, 283–289 (1995).

    Article  Google Scholar 

  109. U. Soderlund, S. A. Elming, R. E. Ernst, D. Schissel, “The Central Scandinavian Dolerite Group-Protracted Hotspot Activity or Back-Arc Magmatism? Constraints from U-Pb Baddeleyite Geochronology and Hf Isotopic Data,” Precambrian Res. 150, 136–152 (2006).

    Article  Google Scholar 

  110. M. Stein and S. L. Goldstein, “From Plume Head to Continental Lithosphere in the Arabian-Nubian Shield,” Nature 382, 773–778 (1996).

    Article  Google Scholar 

  111. J. A. Tarduno and A. V. Smirnov, “Stability of the Earth with Respect to the Spin Axis for the Last 130 Million Years,” Earth Planet. Sci. Lett. 184, 549–553 (2001).

    Article  Google Scholar 

  112. Testing Rodinia Hypothesis from Its Building Blocks, Ed. by S.V. Bogdanova, Z. X Li, E. M. Moores, and S. A. Pisarevsky, Precambrian Res. 160, 1–210 (2008).

  113. E. Tohver, B. A. van der Pluijm, R. van der Voo, et al., “Paleogeography of the Amazon Craton at 1.2 Ga: Early Grenvillian Collision with the Llano Segment of Laurentia,” Earth Planet. Sci. Lett. 199, 185–200 (2002).

    Article  Google Scholar 

  114. T. H. Torsvik, L. M. Carter, L. D. Ashwal, et al., “Rodinia Refined or Obscured: Palaeomagnetism of the Malani Igneous Suite (NW India),” Precambrian Res. 108, 319–333 (2001).

    Article  Google Scholar 

  115. T. H. Torsvik, D. Roberts, and A. Siedlecka, “Palaeomagnetic Data from Sedimentary Rocks and Dolerite Dykes, Kildin Island, Rybachi, Sredni and Varanger Peninsulas, NW Russia and NE Norway: A Review,” Spec. Publ. Nor. Geol. Unders. 7, 315–326 (1995).

    Google Scholar 

  116. T. H. Torsvik, M. A. Smethurst, J. G. Meert, et al., “Continental Break-up and Collision in the Neoproterozoic and Palaeozoic — A tale of Baltica and Laurentia,” Earth Sci. Rev. 40(3–4), 229–258 (1996).

    Article  Google Scholar 

  117. J. W. Valentine and E. M. Moores, “Plate-Tectonic Regulation of Animal Diversity and Sea Level: A Model,” Nature 228, 657–659 (1970).

    Article  Google Scholar 

  118. J. Veizer, “Strontium Isotopes in Seawater through Time,” Ann. Rev. Earth Planet. Sci. 17, 141–167 (1989).

    Article  Google Scholar 

  119. V. A. Vernikovsky and A. E. Vernikovskaya, “Tectonics and Evolution of Granitoid Magmatism in the Yenisei Range,” Geol. Geofiz. 47(1), 35–52 (2006).

    Google Scholar 

  120. V. A. Vernikovsky, A. E. Vernikovskaya, A. B. Kotov, et al., “Neoproterozoic Accretionary and Collisional Events on the Western Margin of the Siberian Craton: New Geological and Geochronological Evidence from the Yenisei Ridge,” Tectonophysics 375, 147–168 (2003).

    Article  Google Scholar 

  121. H. J. Walderhaug, T. H. Torsvik, and E. Halvorsen, “The Egersund Dykes (SW Norway): A Robust Early Ediacaran (Vendian) Palaeomagnetic Pole from Baltica,” Geophys. J. Int. 168, 935–948 (2007).

    Article  Google Scholar 

  122. A. B. Weil, R. Van der Voo, C. MacNiocaill, and J. G. Meert, “The Proterozoic Supercontinent Rodinia: Paleomagnetically Derived Reconstructions for 1100 to 800 Ma,” Earth Planet. Sci. Lett. 154, 13–24 (1998).

    Article  Google Scholar 

  123. G. E. Williams, “Late Precambrian Glacial Climate and the Earth’s Obliquity,” Geol. Mag. 112, 441–465 (1975).

    Article  Google Scholar 

  124. A. P. Willner, T. Ermolaeva, L. Stroink, et al., “Contrasting Provenance Signals in Riphean and Vendian Sandstones in the SW Urals (Russia): Constraints for a Change from Passive to Active Continental Margin Conditions in the Neoproterozoic,” Precambrian Res. 110, 215–239 (2001).

    Article  Google Scholar 

  125. M. T. D. Wingate, I.H. Campbell, W. Compston, and G. M. Gibson, “Ion Microprobe U-Pb Ages for Neoproterozoic Basaltic Magmatism in South-Central Australia and Implications for the Breakup of Rodinia,” Precambrian Res. 87, 135–159 (1998).

    Article  Google Scholar 

  126. M. T. D. Wingate, F. Pirajno, and P. A. Morris, “Warakurna Large Igneous Province: A New Mesoproterozoic Large Igneous Province in West-Central Australia,” J. Geol. 32, 105–108 (2004).

    Article  Google Scholar 

  127. M. T. D. Wingate, S. A. Pisarevsky, and D. A. D. Evans, “Rodinia Connections between Australia and Laurentia: no SWEAT, no AUSWUS?,” Terra Nova. 14, 121–128 (2002).

    Article  Google Scholar 

  128. S. Zhang, Z. X. Li, and H. Wu, “New Precambrian Palaeomagnetic Constraints on the Position of the North China Block in Rodinia,” Precambrian Res. 144,213 (2006).

    Article  Google Scholar 

  129. G. Zhao, M. Sun, S. A. Wilde, and S. Li, “A Paleo-Mesoproterozoic Supercontinent: Assembly, Growth and Breakup,” Earth Sci. Rev. 67, 91–123 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Bogdanova, S.A. Pisarevsky, Z.X. Li, 2009, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2009, Vol. 17, No. 3, pp. 29–45.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanova, S.V., Pisarevsky, S.A. & Li, Z.X. Assembly and Breakup of Rodinia (Some results of IGCP project 440). Stratigr. Geol. Correl. 17, 259–274 (2009). https://doi.org/10.1134/S0869593809030022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593809030022

Key words

Navigation