Skip to main content
Log in

Evolution of paleoproterozoic magmatism: Geology, geochemistry, and isotopic constraints

  • Published:
Stratigraphy and Geological Correlation Aims and scope Submit manuscript

Abstract

Evolution of tectono-magmatic processes in the Paleoproterozoic is divisible into four stages each controlled by its own type of endogenic activity. The critical moment in geological history was at the third stage onset 2.05 Ga ago, when the Archean style of evolution gave way to subsequent one. Magmas of siliceous high-Mg (boninite-like) series (SHMS) dominant during the first stage (2.5–2.3 Ga) had the mixed mantle-crust genesis. They originated in highly depleted ultramafic reservoir of asthenospheric mantle being contaminated by the Archean crustal material during ascent to the surface. Typical of the SHMS magmas were the high content of silica, Al, Mg, Cr and elevated concentrations of Ni, Co, Cu, V, PGE and incompatible elements, LREE included, while concentrations of Fe, Ti, Nb and alkalies, especially K, were at a relatively low level. Magmatism of K-granitoid type was of a limited significance. The second stage, especially its second substage (2.3–2.05 Ga), was distinct because of mass eruptions of picritic and basaltic magmas enriched in Fe, Ti, Mn, P and incompatible elements, LREE in particular, which also had elevated Cr, Ni, Co, Cu and Ba concentration being relatively depleted in Mg and Al. This change in geochemistry of magmatism was independent of tectonic processes, which retained the former style. The third stage (2.05–1.8 Ga) was marked by opening of first oceans (Jormua, Purtuniq and other ophiolites) and by formation of orogens comparable with Phanerozoic orogens that was associated with development of subduction zones and back-arc basins with relevant magmatism. High Mg, Fe, Ti, Cr, Ni, Cu, V but low Th concentrations were typical of intense picrite-basaltic volcanism marking onset of the third stage. Magmas of suprasubduction genesis had considerably higher Si, Al, P, Zn, Th concentrations and very low CaO/Al2O3 ratios. Development of orogens came to the end 1.82–1.80 Ga ago. Appearance of giant belts of intraplate, usually silicic high-K volcanism juxtaposed on stabilized Paleoproterozoic orogens with abnormally thick crust was confined to the fourth stage spanning besides the initial Mesoproterozoic (1.8–1.5 Ga). Anorthosite-rapakivi granitoid batholiths, which originated above mantle plume heads, corresponded to intermediate magma chambers of relevant magmatic systems. As is suggested, juvenile basaltic melts of this stage retained within the crust provoking a large-scale melting of sialic material. The high K, Ti, Zn, Pb, Zr and elevated Be, Sn, Y, Nb, Rb, F, W, Mo, Li and U contents characterized geochemistry of magmas, which originated at the fourth stage

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ahmad, P. K. Mukheree, and J. R. Trivedi, “Geochemistry of Precambrian Mafic Magmatic Rocks of the Western Himalayas, India: Petrologic and Tectonic Implications,” Chem. Geol. 160, 103–119 (1999).

    Article  Google Scholar 

  2. T. T. Alapieti, B. A. Filen, J. J. Lathinen, et al., “Early Proterozoic Layered Intrusions in the Northeastern Part of the Baltic Shield,” Mineral. Petrol. 42(1–4), 1–22 (1990).

    Article  Google Scholar 

  3. Yu. A. Amelin and V. S. Semenov, “Nd and Sr Isotopic Geochemistry of Mafic Layered Intrusions in the Eastern Baltic Shield: Implications for the Evolution of Paleoproterozoic Continental Mafic Magmas,” Contrib. Mineral. Petrol. 124, 255–272 (1996).

    Article  Google Scholar 

  4. Yu. A. Amelin, A. M. Larin, and R. D. Tucker, “Chronology of Multiphase Emplacement of the Salmi Rapakivi-Anorthosite Complex, Baltic Shield: Implications for Magmatic Evolution,” Contrib. Miner. Petrol. 127, 353–368 (1996).

    Article  Google Scholar 

  5. Yu. V. Amelin, L. M. Heaman, and V. S. Semenov, “U-Pb Geochronology of Layered Intrusions in the Eastern Baltic Shield: implications for the Timing and Duration of Paleoproterozoic Continental Rifting,” Precambrian Res. 75, 31–46 (1995).

    Article  Google Scholar 

  6. D. A. Baldwin, E. C. Syme, H. V. Zwanzig, et al., “U-Pb Zircon Ages from the Lynn Lake and Rusty Lake Metavolcanic Belts, Manitoba: Two Ages of Proterozoic Magmatism,” Can. J. Earth Sci. 24, 1053–1063 (1987).

    Google Scholar 

  7. M. E. Barley, A. L. Pickard, and P. J. Sylvester, “Emplacement of a Large Igneous Provinces as a Possible Cause of Banded Iron Formations 2.45 Billion Years Ago,” Nature 385(6611), 55–58 (1997).

    Article  Google Scholar 

  8. B. Beziat, B. Francois, P. Debat, et al., “A Paleoproterozoic Ultramafic-Mafic Assemblage and Associated Volcanic Rocks of the Boromo Greenstone Belt: Fractionates Originating from Island-Arc Volcanic Activity in the West African Craton,” Precambrian Res. 101, 25–47 (2000).

    Article  Google Scholar 

  9. M. E. Bickford, K. D. Collerson, J. F. Lewry, et al., “Proterozoic Collisional Tectonism in the Trans-Hudson Orogen, Saskatchewan,” Geology 18, 14–18 (1990).

    Article  Google Scholar 

  10. O. A. Bogatikov, V. I. Kovalenko, E. V. Sharkov, and V. V. Yarmolyuk, Magmatism and Geodynamics. Terrestrial Magmatism throughout the Earth’s History (Gordon and Breach, London, 2000).

    Google Scholar 

  11. S. V. Bogdanova and S. V. Bibikova, “The “Saamian” of the Belomorian Belt: New Geochronological Constraints,” Precambrian. Res. 64, 131–152 (1993).

    Article  Google Scholar 

  12. M. Boily and J. M. Ludden, “Trace-Element and Nd Isotopic Variations in Early Proterozoic Dyke Swarms Emplacement in the Vicinity of the Kapuskasing Structural Zone: Enrichment Mantle or Assimilation and Fractional Crystallization (AFC) Process?” Can. J. Earth Sci. 28(1), 26–36 (1991).

    Google Scholar 

  13. T. S. Brewer, J. S. Daly, and K.-I. Ahall, “Contrasting Magmatic Arcs in the Palaeoproterozoic of the South-Western Baltic Shield,” Precambrian Res. 92, 297–315 (1998).

    Article  Google Scholar 

  14. P. C. Buchanan, C. Koebert, and W. U. Reimold, “Petrogenesis of Dullsrtom Formation, Bushveld Magmatic Province, South Africa,” Contrib. Miner. Petrol. 137, 133–146 (1999).

    Article  Google Scholar 

  15. N. M. Chernyshov, Platinum-Bearing Formations of the Kursk-Voronezh Region (Central Russia) (Voronezh. Univ., Voronezh, 2004) [in Russian].

    Google Scholar 

  16. K. C. Condie, J. Cox, S. Y. O’Reily, et al., “Distribution of High Field Strength and Rare Earth Elements in Mantle and Lower Crustal Xenoliths from Southwest United States: The Role of Grain-Boundary Phases,” Geochim. Cosmochim. Acta 68(19), 3919–3942 (2004).

    Article  Google Scholar 

  17. F. A. Cook, K. W. Hall, and B. J. Roberts, “Tectonic Delamination and Subcrustal Imbrication of the Precambrian Lithosphere in Northwestern Canada Mapped by LITHOPROBE,” Geology 26(9), 839–842 (1998).

    Article  Google Scholar 

  18. F. Corfu and A. A. Andrews, “U-Pb Age for Mineralized Nipissing Diabase, Gowganda, Ontario,” Can. J. Earth Sci. 23, 107–112 (1986).

    Article  Google Scholar 

  19. D. J. De Paolo, “Neodymium Isotopes in the Colorado Front Range and Crust-Mantle Evolution in the Proterozoic,” Nature 291, 193–196 (1981).

    Article  Google Scholar 

  20. M. N. Ducea, J. B. Saleeby, M. N. Ducea, et al., “The Age and Origin of a Thick Mafic-Ultramafic Root from beneath the Sierra Nevada Batholith,” Contrib. Mineral. Petrol. 133, 169–185 (1998).

    Article  Google Scholar 

  21. S. Elo and A. Korja, “Geophysical Interpretation of the Crustal and Upper Mantle Structure in the Wiborg Rapakivi Granite Area, Southern Finland,” Precambrian Res. 64(1–4), 273–288 (1993).

    Article  Google Scholar 

  22. P. Escola, The Precambrian of Finland (Willeys, London, 1963).

    Google Scholar 

  23. K. Ye. Esipchuk, V. M. Skobelev, and I. V. Shsherbakov, et al., “Magmatism of the Ukrainian Shield,” Mineral. Zh., No. 5/6, 82–94 (2000).

  24. M. A. Fedonkin, “Geochemical Impoverishment and Eukaryotization of the Biosphere: A Causal Link,” Paleontol. Zh., No. 6, 33–40 (2003) [Paleontol. J. 37 (6), 529–599 (2003)].

  25. I. R. Fletcher, W. G. Libby, and K. J. R. Rosman, “Sm-Nd Dating of the 2411 Ma Jimberlana Dyke, Yilgarn Block, Western Australia,” Aus. J. Earth Sci. 34, 523–525 (1987).

    Google Scholar 

  26. G. Gaal and R. Gorbatschev, “An Outline of the Precambrian Evolution of the Baltic Shield,” Precambrian Res. 3, 15–72 (1987).

    Article  Google Scholar 

  27. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr Isotopic Systematics of River Water Suspended Material: Implications for Crustal Evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Article  Google Scholar 

  28. A. I. Golubev and A. P. Svetov, Geochemistry of Basaltic Platform Volcanism in Karelia (Kareliya, Petrozavodsk, 1983) [in Russian].

    Google Scholar 

  29. R. Gorbatschev and S. Bogdanova, “Frontiers in the Baltic Shield,” Precambrian Res. 64, 3–21 (1993).

    Article  Google Scholar 

  30. I. M. Gorokhov, A. B. Kuznetsov, V. A. Melezhik, et al., “The Strontium Isotopic Composition in Early Late Riphean Seawater: Limestones of the Lakhanda Group, the Uchur-Maya Region, Siberia,” Dokl. Akad. Nauk SSSR 360(4), 533–536 (1998) [Dokl. Earth Sci. 360 (4), 488–492 (1998)].

    Google Scholar 

  31. C. F. Gower, T. Rivers, and A. B. Ryan, “Middle Proterozoic Mafic Magmatism in Labrador, Eastern Canada,” in Mid-Proterozoic Laurentia-Baltica, Ed. by C. F. Gower, T. Rivers, and B. Ryan, Geol. Assoc. Can. Spec. Pap. 38 485–506 (1990).

  32. T. J. Griffin, R. W. Page, S. Sheppard, et al., “Tectonic Implications of Palacoproterozoic Post-Collisional, High-K Felsic Igneous Rocks from Kimberley Region of Northeastern Australia,” Precambrian. Res. 101, 1–23 (2000).

    Article  Google Scholar 

  33. R. P. Halls and D. J. Hughes, “Noritic Dykes of Southern West Greenland: Early Proterozoic Boninitic Magmatism,” Contrib. Miner. Petrol. 97(2), 169–182 (1990).

    Article  Google Scholar 

  34. E. Hanski, R. J. Walker, H. Huhma, et al., “The Os and Nd Isotopic Systematics of the 2.44 Ga Akanvaara and Koitelainen Mafic Layered Intrusions in Northern Finland,” Precambrian Res. 109, 73–102 (2001a).

    Article  Google Scholar 

  35. E. Hanski, H. Huhma, P. Pastos, et al., “The Palaeoproterozoic Komatiite-Picrite Association of Finnish Lapland,” J. Petrology 42(5), 855–876 (2001b).

    Article  Google Scholar 

  36. T. N. Harrison, P. E. Brown, T. J. Dempster, et al., “Magmatism, Metamorphism and Extensional Tectonics in the Mid-Proterozoic Rapakivi Suite of Southern Greenland,” Spec. Pap. Geol. Surv. Fin., No. 8, 1–66 (1989).

  37. L. M. Heaman, “2.45 Ga Global Mafic Magmatism: Earth’s Oldest Superplume?” in Abstracts of the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology, Ed. by M. A. Lanphere, G. B. Dalrymple, and B. D. Turrin, US Geol. Survey, 1994, p. 132.

  38. L. M. Heaman, “Global Mafic Magmatism at 2.45 Ga: Remnants of an Ancient Large Igneous Province?” Geology, London, 25(4), 299–302 (1997).

    Google Scholar 

  39. L. M. Heaman and M. T. Corkery, “U-Pb Geochronology of the Split Lake Block, Manitoba: Preliminary Results,” in Trans-Hudson Orogen Transect, Ed. by Z. Hajnal and J.F. Lewry, Lithoprobe Report, No. 55, 60–68 (1996).

  40. E. Hegner, T. K. Kyser, and L. Hulbert, “Nd, Sr and O Isotopic Constraints on the Petrogenesis of Mafic Intrusions in the Proterozoic Trans-Hudson Orogen of Central Canada,” Can. J. Earth Sci. 26(5), 1027–1035 (1989).

    Google Scholar 

  41. W. Hirdes, D. W. Davies, G. Ludtke, et al., “Two Generations of Birrimian (Paleoproterozoic) Volcanic Belts in Northern Cote d’Ivoire (West Africa): Consequences for the Birimian Controversy,” Precambrian. Res. 80, 173–191 (1996).

    Article  Google Scholar 

  42. P. F. Hoffman, “United Plates of America, the Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia,” in Annual Review of Earth and Planetary Sciences, Ed. by G. W. Wetherill, A. L. Albee, and F. G. Stehly, Geology 16, 542–603 (1988).

  43. H. Huhma, R. A. Cliff, V. Perttunen, et al., “Sm-Nd and Pb-Isotopic Study of Mafic Rocks Associated with Early Proterozoic Continental Rifting: the Perapohja Schist Belt in Northern Finland,” Contrib. Miner. Petrol. 104, 369–379 (1990).

    Article  Google Scholar 

  44. W.T. Jolly, “Lithophile Elements in Huronian Low-Ti Continental Tholeiites from Canada and Evolution of the Precambrian Mantle,” Earth Planet. Sci. Lett. 85(4), 401–415 (1987).

    Article  Google Scholar 

  45. A. Kerr and B.J. Fryer, “Sources of Early and Middle Proterozoic Magmas in the Makkovik Province: Evidence from Nd Isotope Data,” in Mid-Proterozoic Laurentia-Baltica, Ed. by C. F. Gower, T. Rivers, and B. Ryan, Geol. Assoc. Can. Spec. Pap. 38, 53–64 (1990).

  46. R. Kerrich, D. Wyman, J. Fan, et al., “Boninite Series: Low-Ti Tholeiite Associations from the 2.7 Ga Abitibi Greenstone Belt,” Earth Planet. Sci. Lett. 164, 303–316 (1998).

    Article  Google Scholar 

  47. V. E. Khain and N. A. Bozhko, Historical Geotectonics, Precambrian (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  48. A. H. Knoll, “Archean and Proterozoic Paleontology,” Am. Assoc. Stratigr. Paleontol. Foundation 1, pp. 51–80 (1996).

    Google Scholar 

  49. E. G. Konnikov, Differentiated Hyperbasite-Basite Complexes of the Precambrian in the Trans-Baikal Region (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  50. A. Kontinen, “An Early Proterozoic Ophiolite — the Jormua Mafic-Ultramafic Complex, Northeastern Finland,” Precambrian Res. 35, 313–341 (1987).

    Article  Google Scholar 

  51. A. G. Krill, S. Bergh, I. Lindahl, et al., “Rb-Sr, U-Pb and Sm-Nd Isotopic Dates from Precambrian Rocks of Finnmark,” Bull. Nor. Geol. Unders. 403, 37–54 (1985).

    Google Scholar 

  52. S.M. Kuehner, “Petrology and Geochemistry of Early Proterozoic High-Mg Dykes from the Vestfold Hills, Antarctica,” in Boninites and Related Rocks, Ed. by A. R. Crawford (Unwin Hyman, London, 1989) pp. 208–231.

    Google Scholar 

  53. V. S. Kulikov, “High-Mg Magmatism of the Early Precambrian,” in Komatiites and High-Mg Volcanics of the Early Precambrian in the Baltic Shield, Ed. by O. A. Bogatikov (Nauka, Leningrad, 1988), pp. 89–161 [in Russian].

    Google Scholar 

  54. V. S. Kulikov, V. V. Kulikova, B. S. Lavrov, et al., Suisari Picrite-Basaltic Complex of Paleoproterozoic in Karelia (Reference Section and Petrology) (KarNTs RAN, Petrozavodsk, 1999) [in Russian].

    Google Scholar 

  55. A. B. Kuznetsov, V. A. Melezhik, I. M. Gorokhov, et al., “Sr Isotope Composition in Paleoproterozoic Carbonates Extremely Enriched in 13C: Kaniapiskau Supergroup, the Labrador Trough of the Canadian Shield,” Stratigr. Geol. Korrelyatsiya 11(3), 3–14 (2003) [Stratigr. Geol. Correlation 11 (3), 209–219 (2003)].

    Google Scholar 

  56. K. Laajoki, “Karjalaisten muodostumien alaosat Puolangan tutkimusten valossa,” Geologi. 32, 45–49 (1980).

    Google Scholar 

  57. D. Lahondere, D. Thieblemont, M. Tegyey, et al., “First Evidence of Early Birmian (2.21 Ga) Volcanic Activity in Upper Guinea: the Volcanics and Associated Rocks of the Niani Suite,” J. African Earth Sci. 35, 417–431 (2002).

    Article  Google Scholar 

  58. D.D. Lambert, R.J. Walker, J.W. Morgan, et al., “Re-Os and Sm-Nd Isotope Geochemistry of the Stillwater Complex, Montana: Implications for the Petrogenesis of the J-M Reef,” J. Petrology 35(6), 1717–1753 (1994).

    Google Scholar 

  59. A. M. Larin, E. B. Sal’nikova, A. B. Kotov, et al., “The North Baikal Volcanoplutonic Belt: Age, Formation Duration, and Tectonic Setting,” Dokl. Akad. Nauk 392(4), 506–511 (2003) [Dokl. Earth Sci. 392 (7), 963–967 (2003)].

    Google Scholar 

  60. L. S. Lauri and I. Manttari, “The Kynsijarvi Quartz Alkali Feldspar Syenite, Koillismaa, Eastern Finland — Silicic Magmatism Associated with 2.44 Ga Continental Rifting,” Precambrian Res. 119, 121–140 (2002).

    Article  Google Scholar 

  61. O. A. Levchenkov, A. A. Nikolaev, E. S. Bogomolov, et al., “Uranium-Lead Age of the Sumian Acid Magmatic Rocks in Northern Karclia,” Stratigr. Geol. Korrelyatsiya 2(1), 3–9 (1994) [Stratigr. Geol. Correlation 2 (1), 1–18 (1994)].

    Google Scholar 

  62. J. F. Lewry and K.D. Collerson, “The Trans-Hudson Orogen: Extent, Subdivisions and Problems,” in The Early Proterozoic Trans-Hudson Orogen of North America, Ed. by J. F. Lewry and M. R. Stauffer, Spec. Publ. Geol. Assoc. Can. 37, 1–14 (1990).

  63. I. S. McCallum, “The Stillwater Complex,” in Layered Intrusions, Ed. by R. G. Cawthorn (Elsevier, Amsterdam, 1996), pp. 441–483.

    Google Scholar 

  64. M. D. Mirota and J. Veizer, “Geochemistry of Precambrian Carbonates: VI. Aphebian Albanel Formations, Quebec, Canada,” Geochim. Cosmochim. Acta. 58(7), 1735–1745 (1994).

    Article  Google Scholar 

  65. J. W. Morgan, H. J. Stein, and J. L. Hannah, “Re-Os study of Fe-Ti-V Oxide and Fe-Cu-Ni Sulfide Deposits, Suwalki Anorthosite Massif, Northeast Poland,” Mineralium Deposita 5, 391–401 (2000).

    Article  Google Scholar 

  66. S. B. Mukasa, A. H. Wilson, R.W. Carlson, “A Multielement Geochronologic Study of the Great Dyke, Zimbabwe: Significance of the Robust and Reset Ages,” Earth Planet. Sci. Lett. 164(1–2), 353–369 (1998).

    Article  Google Scholar 

  67. S. Neogi, H. Miura, and Y. Hariya, “Geochemistry of the Dongargarh Volcanic Rocks, Central India: Implications for Precambrian Mantle,” Precambrian Res. 76, 77–91 (1996).

    Article  Google Scholar 

  68. L. A. Neymark, J. V. Amelin, and A.M. Larin, “Pb-Nd-Sr Isotopic and Geochemical Constraints on the Origin of the 1.54–1.56 Ga Salmi Rapakivi Granite-Anorthosite Batholith (Karelia Russia),” Mineral. Petrol. 50, 173–193 (1994).

    Article  Google Scholar 

  69. J. D. Oberholzer and P. G. Eriksson, “Subaerial Volcanism in the Paleoproterozoic Hekpoort Formation (Transvaal Supergroup), Kaapvaal Craton,” Precambrian Res. 101, 183–210 (2000).

    Article  Google Scholar 

  70. Yu. P. Orovetskii, Mantle Diapirism (Naukova Dumka, Kiev, 1990) [in Russian].

    Google Scholar 

  71. J. Patchett and O. Kouvo, “Origin of Continental Crust of 1.9–1.7 Ga Age: Nd Isotopes and U-Pb Zircon Ages in the Svecokarelian Terrane of South Finland,” Contrib. Mineral. Petrol. 92, 1–12 (1986).

    Article  Google Scholar 

  72. P. J. Patchett, W. Todt, and R. Gorbatschev, “Origin of Continental Crust of 1.9–1.7 Ga Age: Nd Isotopes in the Svecofennian Orogenic Terrains of Sweden,” Precambrian Res. 35, 145–160 (1987).

    Article  Google Scholar 

  73. J. A. Pearce, F. M. Thirlwall, G. A. Ingram, et al., “Isotopic Evidence for the Origin of Boninites and Related Rocks Drilled in the Izu-Bonin (Ogasawara) Forearc,” Proc. ODP, Sci. Results 125, 237–261 (1992).

    Google Scholar 

  74. L. J. Pekkarinen and H. Lukkarinen, “Paleoproterozoic Volcanism in the Kiihtelysvaara-Tohmajarvi District, Eastern Finland,” Bull. Geol. Surv. Fin. 357, 1–30 (1991).

    Google Scholar 

  75. P. Peltonen, A. Kontinen, and H. Huhma, “Petrology and Geochemistry of Metabasalts from the 1.95 Ga Jormua ophiolite, Northeastern Finland,” J. Petrology 37, 1359–1383 (1996).

    Google Scholar 

  76. W.C. Phinney and H.C. Halls, “Petrogenesis of the Early Proterozoic Matachewan Dyke Swarm, Canada, and Implications for Magma Emplacement and Subsequent Deformation,” Can. J. Earth Sci. 38, 1541–1563 (2001).

    Article  Google Scholar 

  77. I. S. Puchtel and D. Z. Zhuravlev, “Early Proterozoic Picrites of the Olekma Granite-Greenstone Belt: Nd Systematics and Petrogenesis, Geochemistry,” Geokhimiya, No. 8, 1111–1123 (1992).

  78. I. S. Puchtel, N. T. Arndt, A. W. Hofmann, et al., “Petrology of Mafic Lavas within Onega Plateau, Central Karelia: Evidence for 2.0 Ga Plume-Related Continental Crustal Growth in the Baltic Shield,” Contrib. Miner. Petrol. 130, 134–153 (1998).

    Article  Google Scholar 

  79. I. S. Puchtel, G. E. Brügmann, and A. W. Hofmann, “Precise Re-Os Mineral Isochron and Pb-Nd-Os Isotope Systematics of a Mafic-Ultramafic Sill in the 2.0 Ga Onega Plateau (Baltic Shield,” Earth Planet. Sci. Lett. 170, 447–461 (1999).

    Article  Google Scholar 

  80. I. S. Puchtel, G. E. Brügmann, A. W. Hofmann, et al., “Os-Isotope Systematics of Komatiitic Basalts from the Vetreny Belt, Baltic Shield: Evidence for a Chondritic Source of the 2.45 Ga Plume,” Contrib. Mineral. Petrol. 140, 588–599 (2001).

    Google Scholar 

  81. I. S. Puchtel, K. M. Haase, A. W. Hofmann, et al., “Petrology and Geochemistry of Crustally Contaminated Komatiitic Basalts from the Vetreny Belt, Southeastern Baltic Shield: Evidence for An Early Proterozoic Mantle Plume Beneath Rifted Archean Continental Lithosphere,” Geochim. Cosmochim. Acta 61(6), 1205–1222 (1997).

    Article  Google Scholar 

  82. I. S. Puchtel, A. W. Hofmann, K. Megzer, et al., “Petrology of a 2.41 Ga Remarkably Fresh Komatiitic Basalt Lava Lake in Lion Hills, Central Vetreny Belt, Baltic Shield,” Contrib. Miner. Petrol. 124, 273–290 (1996).

    Article  Google Scholar 

  83. O. T. Rämö, “Petrogenesis of the Proterozoic Rapakivi Granites and Basic Rocks of Southeastern Fennoscandia: Nd and Pb Isotopic and General Geochemical Constraints,” Bull. Geol. Surv. Fin., No. 355, 161 (1991).

  84. O.T. Rämö and I. Haapala, “One Hundred Years of Rapakivi Granite,” Mineral. Petrol. 52, 129–185 (1995).

    Article  Google Scholar 

  85. O.T. Rämö and I. Haapala, “Rapakivi Granite Magmatism: a Global Review with Emphasis on Petrogenesis, in Petrology and Geochemistry of Magmatic Suites of Rocks in the Continental and Oceanic Crust, Ed. by D. Demaiffe (ULB, Bruxelles, 1996), pp. 177–200.

    Google Scholar 

  86. Magmatic Dike Swarms as Indicators of Endogenic Regime (Kola Peninsula), Ed. by F. P. Mitrofanov (KNTs AN SSSR, Apatity, 1989) [in Russian].

    Google Scholar 

  87. H. A. Sandeman, B. L. Cousens, and C. J. Hemmingway, “Continental Tholeiitic Mafic Rocks of the Paleoproterozoic Hurwitz Group, Central Hearne Sub-Domain, Nunavut: Insight into the Evolution of the Hearne Sub-Continental Lithosphere,” Can. J. Earth Sci. 40, 1219–1237 (2003).

    Article  Google Scholar 

  88. V. M. Savatenkov, R. B. Sulimov, A. V. Sergeev, et al., “Sm-Nd, Rb-Sr and Pb-Pb Isotopic Systematics of the Gremyakha-Vyrmes Basite-Hyperbasite Massif: Crust-Mantle Interaction by Magma and Ore Generation,” Zap. Vseross. Mineral. O-va, No. 5, 15–25 (1998).

  89. D. J. Scott, H. Helmstaedt, and M.J. Bickle, “Purtuniq Ophiolite, Cape Smith belt, Northern Quebec, Canada: A Reconstructed Section of Early Proterozoic Oceanic Crust,” Geology 20, 173–176 (1992).

    Article  Google Scholar 

  90. H.-M. Seitz and R.D. Keays, “Platinum-Group Element Segregations and Mineralization in Noritic Ring Complex from Proterozoic Siliceous High Magnesian Basalt Magmas in Vestfold Hills, Antarctica,” J. Petrol. 38(6), 703–725 (1997).

    Article  Google Scholar 

  91. M. A. Semikhatov, Stratigraphy and Geochronology of the Proterozoic (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  92. M. A. Semikhatov and M. E. Raaben, “Dynamics of the Global Diversity of Proterozoic Stromatolites. Article 2: Africa, Australia, North America and general Synthesis,” Stratigr. Geol. Korrelyatsiya 4(1), 26–54 (1996) [Stratigr. Geol. Correlation 4 (1), 24–50 (1996)].

    Google Scholar 

  93. M. A. Semikhatov, A. B. Kuznetsov, I. M. Gorokhov, et al., “Low 87Sr/86Sr Ratios in Seawater of the Grenville and post-Grenville Time: Determining Factors,” Stratigr. Geol. Korrelyatsiya 10(1), 3–46 (2002) [Stratigr. Geol. Correlation 10 (1), 1–41 (2002)].

    Google Scholar 

  94. M. S. Semikhatov, M. E. Raaben, V. I. Sergeev, et al., “Biotic Events and Positive ΔCcarb Anomaly at 2.3–2.06 Ga,” Stratigr. Geol. Korrelyatsiya 7(5), 3–27 (1999) [Stratigr. Geol. Correlation 7 (5), 413–436 (1999)].

    Google Scholar 

  95. S. Sensarma, H. Palme, and D. Mukhopadhyay, “Crust-Mantle interaction in the Genesis of Siliceous High Magnesian Basalts: Evidence from the Early Proterozoic Dongargarh Supergroup, India,” Chem. Geol. 187(1–2), 21–37 (2002).

    Article  Google Scholar 

  96. E. V. Sharkov, “Mesoproterozoic Intraplate Magmatic Systems Exemplified by Anorthosite-Rapakivi Granite Complexes of the Baltic and Ukrainian Shields,” Ross. Zh. Nauk o Zemle 1(4), (1999) [http://eos.wdsb.rssi.ru/rjes].

  97. E. V. Sharkov and V. F. Smolkin, “Palaeoproterozoic Layered Intrusions of the Russian Part of the Fennoscandian Shield: a Review,” Trans. Inst. Min. Metal., Sect. B., Appl. Earth Sci., No. 107, B23–B38 (1998).

    Google Scholar 

  98. E. V. Sharkov and V. F. Smolkin, “The Early Proterozoic Pechenga-Varzuga Belt: A Case of Precambrian Back-Arc Spreading,” Precambrian Res. 82, 133–151 (1997).

    Article  Google Scholar 

  99. E. V. Sharkov and V. B. Svalova, “Late Cenozoic Geodynamics of the Alpine Foldbelt as Related to Formation of Intracontinental Seas (Petrologic and Geochemical Aspects),” Izv. Vyssh. Uchebn. Zaved., Ser. Geol. Razved., No. 1, 3–11 (2005).

  100. E. V. Sharkov, V. F. Smolkin, and I. S. Krasivskaya, “Early Proterozoic Igneous Province of Siliceous High-Mg Boninite-like Rocks in the Eastern Baltic Shield,” Petrologiya 5(5), 503–522 (1997) [Petrology 5 (5), 448–465 (1997)].

    Google Scholar 

  101. E. V. Sharkov, N. V. Trubkin, I. S. Krassivskaya, et al., “Structural and Compositional Characteristics of the Oldest Volcanic Glass in the Early Paleoproterozoic Boninite-Like Lavas of Southern Karelia,” Petrologiya 12(3), 264–280 (2004a) [Petrology 12 (3), 227–243 (2004)].

    Google Scholar 

  102. E. V. Sharkov, I. S. Krassivskaya, and A. V. Chistyakov, “Dispersed Mafic Ultramafic Intrusive Magmatism in Early Paleoproterozoic Mobile Zones of the Baltic Shield: An Example of the Belomorian Drusite (Coronite) Complex,” Petrologiya 12(10), 632–655 (2004) [Petrology 12 (6), 561–582 (2004b)].

    Google Scholar 

  103. N. P. Shcherbak, G. V. Artemenko, E. N. Bartnitskii, et al., Precambrian Geochronological Scale of the Ukrainian Shield (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

  104. A. A. Shchipanskii, A. V. Samsonov, M. M. Bogina, et al., “High-Mg, Low-Ti Quartz Amphibolites of the Khizovaara Greenstone Belt, Northern Karelia: Archean Metamorphosed Boninites?” Dokl. Akad. Nauk 365(6), 817–820 (1999) [Dokl. Earth Sci. 365A (3), 422–425 (1999)].

    Google Scholar 

  105. A. A. Shchipanskii, I. I. Babarina, K. A. Krylov, et al., “The Oldest Ophiolites: The Late Archean Supra-subduction Zone Complex of the Iringora Structure, North Karelian Greenstone Belt,” Dokl. Akad. Nauk 377(3), 376–380 (2001) [Dokl. Earth Sci. 377A (3), 283–287 (2001)].

    Google Scholar 

  106. S. Sheppard, “Hybridization of Shoshonitic Lamprophyre and Calc-Alkaline Granite Magma in the Early Proterozoic Mt. Bundey Igneous Suite, Northern Territory,” Aus. J. Earth Sci. 42(2), 173–185 (1995).

    Google Scholar 

  107. P. K. Skuf’in, T. B. Bayanova, and A. A. Delenitsyn, “Isotopic-Geochemical Characteristics of Volcanic Rocks from the Pechenga Structure (Kola Peninsula),” in VII Symposium on Isotopic Geochemistry Honored to Academician A.P. Vinogradov (GEOKhI, Moscow, 2004), pp. 240–241 [in Russian].

    Google Scholar 

  108. V. F. Smolkin, Komatiitic and Picritic Magmatism of the Early Precambrian in the Baltic Shield (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  109. V. F. Smolkin, T. B. Bayanova, and Zh. A. Fedotov, “Mineralized Mafic-Ultramafic Rocks of the Pechenga-Alarechensk Region: Isotopic Dating,” in Proceedings of the Second Russian Conference on Isotopic Geology. November 25–27, 2003 (St. Petersburg, 2003), pp. 467–470 [in Russian].

  110. V. F. Smolkin, F. P. Mitrofanov, A. A. Avedisyan, et al., Magmatism, Sedimentogenesis and Geodynamics of the Pechenga Paleorift Structure (KNTs RAN, Apatity, 1995) [in Russian].

    Google Scholar 

  111. Geology of Karelia, Ed. by V. A. Sokolov (Nauka, Leningrad, 1987) [in Russian].

    Google Scholar 

  112. A. V. Stepanova, Extended Abstract of Candidate’s Dissertation in Geology and Mineralogy (St. Petersburg, 2005).

  113. R. A. Stern, E. C. Syme, and S. B. Lucas, “Geochemistry of 1.9 Ga MORB-and OIB-like Basalts from the Amisk Collage, Flin Flon Belt, Canada: Evidence for an Intra-Oceanic Origin,” Geochim. Cosmochim. Acta. 59(15), 3131–3154 (1995).

    Article  Google Scholar 

  114. P. J. Sylvester and K. Attoh, “Lithostratigraphy and Composition of 2.1 Ga Greenstone Belts of the West African Craton and Their Bearing on Crustal Evolution and the Archean-Proterozoic Boundary,” J. Geol. 100, 377–393 (1992).

    Article  Google Scholar 

  115. Y. A. Taran, J. W. Hedenquist, M. A. Korzhinsky, et al., “Geochemistry of Magmatic Gases from Kudryavy Volcano, Iturup, Kuril Islands,” Geochim. Cosmochim. Acta. 59(9), 1749–1761 (1995).

    Article  Google Scholar 

  116. A. Thom, N. T. Arndt, C. Chauvel, et al., “Flin Flon and Western la Ronge belts, Saskatchewan: Products of Proterozoic Subduction-Related Volcanism,” in The Early Proterozoic Trans-Hudson Orogen of North America, Ed. by J.F. Lewry and M.R. Stauffer, Spec. Publ. Geol. Assoc. Can. 37, 163–176 (1990).

  117. A. Tsuru, R. J. Walker, A. Kontinen, et al., “Re-Os Isotopic Systematics of the 1.95 Ga Jormua Ophiolite Complex, Northeastern Finland,” Chem. Geol. 164, 123–141 (2000).

    Article  Google Scholar 

  118. S.I. Turchenko, V.S. Semenov, J.V. Amelin, et al., “The Early Proterozoic Riftogenic Belt of Northern Karelia and Associated Cu-Ni, PGE and Cu-Au Mineralization,” Geol. For. Stockh. Forh., No. 113, 70–72 (1991).

  119. P.J. Valbracht, “Early Proterozoic Continental Tholeiites from Western Bergslagen, Central Sweden, II. Nd and Sr Isotopic Variations and Implications from Sm-Nd Systematics for the Svecofennian Sub-Continental Mantle,” Precambrian Res. 52, 215–230 (1991).

    Article  Google Scholar 

  120. J. Veizer and W. Compston, “87Sr/86Sr in Precambrian Carbonates as an Index of Crustal Evolution,” Geochim. Cosmochim. Acta. 40(8), 905–914 (1976).

    Article  Google Scholar 

  121. J. Veizer, R. N. Clayton, R. W. Hinton, et al., “Geochemistry of Precambrian Carbonates: 3-Shelf seas and Non-Marine Environments of the Archean,” Geochim. Cosmochim. Acta. 54, 2717–2729 (1990).

    Article  Google Scholar 

  122. J. Veizer, R. N. Clayton, R. W. Hinton, “Geochemistry of Precambrian Carbonates: IV. Early Paleoproterozoic (2.25 ± 0.25) Seawater,” Geochim. Cosmochim. Acta. 56, 875–885 (1992a).

    Article  Google Scholar 

  123. J. Veizer, K. A. Plumb, R. N. Clayton, et al., “Geochemistry of Precambrian Carbonates: V. Late Paleoproterozoic Seawater,” Geochim. Cosmochim. Acta. 56(7), 2487–2501 (1992b).

    Article  Google Scholar 

  124. D. A. Velikoslavinskii, A. P. Birkis, O. A. Bogatikov, et al., Anorthosite-Rapakivi Granite Formation (Nauka, Leningrad, 1978) [in Russian].

    Google Scholar 

  125. V. R. Vetrin and A. A. Delenitsyn, “Proterozoic Mantle-Crust Interaction in the Archean Basement of the Pechenga Paleorift,” Dokl. Akad. Nauk 390(5), 663–667 (2003) [Dokl. Earth Sci. 391 (5), 689–692 (2003)].

    Google Scholar 

  126. D. C. Vogel, J. I. Vuollo, T. Alapieti, et al., “Tectonic, Stratigraphic and Geochemical Comparison between 2500–2440 Ma Mafic Igneous Events in the Canadian and Fennoscandian Shields,” Precambrian Res. 92(2), 89–116 (1998).

    Article  Google Scholar 

  127. J. I. Vuollo, V. M. Nykanen, J. P. Liipo, et al., “Palaeoproterozoic Mafic Dyke Swarms in the Eastern Fennoscandian Shield, Finland: A Review,” in Physics and Chemistry of Dykes, Ed. by G. Baer and A. Heimann (Balkema, Rotterdam, 1995).

    Google Scholar 

  128. R. J. Walker, J. W. Morgan, and E. J. Hanski, “Re-Os Systematics of Early Proterozoic Ferropicrites, Pechenga Complex, Northwestern Russia: Evidence for Ancient 187Os-Enriched Plumes,” Geochim. Cosmochim. Acta. 61, 3145–3160 (1997).

    Article  Google Scholar 

  129. R. J. Wardle and M. J. van Kranendonk, “The Paleoproterozoic Southeastern Churchill Province of Labrador-Quebec, Canada: Orogenic Developments as a Consequence of Oblique Collision and Indentation,” in Precambrian Crustal Evolution in the North Atlantic Region, Ed. by T. S. Brewer, Spec. Publ. Geol. Soc. 112, 137–153 (1996).

  130. S. G. Whittaker, T. T. Hami, T. K. Kyser, et al., “Petrogenesis of 1.9 Ga Limestones and Dolostones and Their Record of Paleoproterozoic Environments,” Precambrian Res. 90(1), 167–202 (1998).

    Google Scholar 

  131. M. Wilson, Igneous Petrogenesis (Unwin Hyman, London, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Sharkov, M.M. Bogina, 2006, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2006, Vol. 14, No. 4, pp. 3–27.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharkov, E.V., Bogina, M.M. Evolution of paleoproterozoic magmatism: Geology, geochemistry, and isotopic constraints. Stratigr. Geol. Correl. 14, 345–367 (2006). https://doi.org/10.1134/S0869593806040010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869593806040010

Key words

Navigation