Skip to main content
Log in

Large-scale-long-term Strength of the Lithosphere: New Theory and Applications

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Long-term strength of the lithosphere is often assumed to be equivalent to its average deviatoric stress level. However, this definition is only correct for a homogeneous visco-elastic material, in which no localized (in space and/or time) weakening and deformation processes occur. Here, I instead propose to define the large-scale-long-term strength of the lithosphere as the measure of its mechanical resistance to irreversible deformation, which corresponds to the amount of mechanical energy irreversibly spent (i.e., dissipated) for producing unit irreversible (i.e., inelastic, visco-plastic) deformation. According to this new definition, strength is the ratio of the integrated (through given lithospheric volume and time) mechanical energy dissipation to the integrated irreversible visco-plastic strain. With this new definition, the large-scale-long-term strength of the lithosphere stands as a strain-averaged rather than a volume-time-averaged quantity. As the result, an interesting behavior can occur when, due to localization of irreversible deformation along volumetrically minor weak structures, strength of the lithosphere can be significantly lower than its average long-term deviatoric stress level characteristic for volumetrically dominant strong elastic regions. This definition is applicable for both homogeneous and heterogeneous (i.e., localized in space and/or time) lithospheric deformation and provides a useful framework for analyzing various geodynamic settings on regional and global scale. In particular, I show some implications of this new lithospheric strength theory for better understanding of (i) intense melt-induced weakening of the lithosphere by magmatic processes, (ii) very low strength of plate interface in subduction zones and (iii) low brittle/plastic strength of tectonic plates predicted by global mantle convection models with plate tectonics. Although this work focuses on evaluating the long-term-large-scale brittle/plastic strength and deformation parameters, the proposed approach can also be applied for quantifying the effective ductile (i.e., viscous) strength and respective long-term-large-scale rheological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Bahadori, A. and Holt, W.E., Geodynamic evolution of southwestern North America since the Late Eocene, Nat. Commun., 2019, vol. 10, article no. 5213.

    Article  Google Scholar 

  2. Bercovici, D. and Ricard, Y., Plate tectonics, damage and inheritance, Nature, 2014, vol. 508, pp. 513–516.

    Article  CAS  Google Scholar 

  3. Bercovici, D. and Mulyukova, E., Evolution and demise of passive margins through grain mixing and damage, Proc. Nat. Acad. Sci., 2021, vol. 118., e2011247118.

    Article  CAS  Google Scholar 

  4. Brace, F.W. and Kohlstedt, D.L., Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res., 1980, vol. 500, pp. 6248–6252.

    Article  Google Scholar 

  5. Burov, E.B. and Watts, A.B., The long-term strength of continental lithosphere : “jelly sandwich” or “creme brulee” ? Geol. Soc. Amer. Bull., 2006, vol. 16, pp. 4–10.

    Google Scholar 

  6. Byerlee, J., Friction of rocks, Pure Appl. Geophys., 1978, vol. 116, pp. 615–626.

    Article  Google Scholar 

  7. Coltice, N., Rolf, T., and Tackley, P.J., and. Labrosse, S., Dynamic causes of the relation between area and age of the ocean floor, Science, 2012, vol. 336, no. 6079, pp. 335–338.

    Article  CAS  Google Scholar 

  8. Crameri, F., Tackley, P.J., Meilick, I., Gerya, T., and Kaus, B.J.P., A free plate surface and weak oceanic crust produce single-sided subduction on Earth, Geophys. Res. Lett., 2012, vol. 39. https://doi.org/10.1029/2011GL050046

  9. Dal Zilio, L. and Gerya, T., Subduction earthquake cycles controlled by episodic fluid pressure cycling, Lithos, 2022, vol. 426–427, article no. 106800.

    Article  Google Scholar 

  10. Dal Zilio, L., van Dinther, Y., Gerya, T.V., and Pranger, C.C., Seismic behaviour of mountain belts controlled by plate convergence rate, Earth Planet. Sci. Lett., 2018, vol. 482, pp. 81–92.

    Article  CAS  Google Scholar 

  11. Dal Zilio, L., Hegyi, B., Behr, W., and Gerya, T., Hydro-mechanical earthquake cycles in a poro-visco-elasto-plastic fluid-bearing fault structure, Tectonophys., 2022, vol. 838, article no. 229516.

  12. Ellis, S. and Wang, K., Lithospheric strength and stress revisited: Pruning the Christmas tree, Earth Planet. Sci. Lett., 2022, vol. 595, article no. 117771.

    Article  CAS  Google Scholar 

  13. Escartín, J., Hirth, G., and Evans, B., Strength of slightly serpentinized peridotites: implications for the tectonics of oceanic lithosphere, Geology, 2001, vol. 29, pp. 1023–1026.

    Article  Google Scholar 

  14. Gerya, T.V., Introduction to Numerical Geodynamic Modelling, 2nd Edition, (Cambridge University Press, Cambridge 2019).

    Book  Google Scholar 

  15. Gerya, T. and Burov, E., Nucleation and evolution of ridge-ridge-ridge triple junctions: Thermomechanical model and geometrical theory, Tectonophys., 2018, vol. 746, pp. 83–105.

    Article  Google Scholar 

  16. Gerya, T.V. and Meilick, F.I., Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts, J. Metamorph. Geol., 2011, vol. 29, pp. 7–31.

    Article  Google Scholar 

  17. Gerya, T.V., Connolly, J.A.D., and Yuen, D.A., Why is terrestrial subduction one-sided? Geology, 2008, vol. 36, no. 1, pp. 43–46.

    Article  Google Scholar 

  18. Gerya, T.V., Stern, R.J., Baes, M., Sobolev, S., and Whattam, S.A., Plate tectonics on the Earth triggered by plume-induced subduction initiation, Nature, 2015, vol. 527, pp. 221–225.

  19. Goetze, C. and Evans, B., Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics, Geophys. J. R. Astron. Soc., 1989, vol. 59, pp. 463–478.

    Article  Google Scholar 

  20. Gudmundsson, A., Emplacement of dykes, sills and crustal magma chambers at divergent plate boundaries, Tectonophys., 1990, vol. 176, pp. 257–275.

    Article  Google Scholar 

  21. Gudmundsson, A., Emplacement and arrest of sheets and dykes in central volcanoes, J. Volcanol. Geotherm. Res., 2002, vol. 116, pp. 279–298.

    Article  CAS  Google Scholar 

  22. Gulcher, A.J.P., Gerya, T.V., Montesi, L.G.J., and Munch, J., Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus, Nature Geosci., 2020, vol. 13, pp. 547–554.

    Article  CAS  Google Scholar 

  23. Karato, S., Some issues on the strength of the lithosphere, J. Earth Sci., 2011, vol. 22, pp. 131–136.

    Article  Google Scholar 

  24. Karato, S. and Barbot, S., Dynamics of fault motion and the origin of contrasting tectonic style between Earth and Venus, Sci. Rep., 2018, vol. 8, article no. 11884.

    Article  Google Scholar 

  25. Katz, R.F., Spiegelman, M., and Holtzman, B., The dynamics of melt and shear localization in partially molten aggregates, Nature, 2006, vol. 442, pp. 676–679.

    Article  CAS  Google Scholar 

  26. Kirby, S.H., Tectonic stresses in the lithosphere: constraints provided by the experimental deformation of rocks, J. Geophys. Res., 1980, vol. 85, no. B11, pp. 6353–6363.

    Article  Google Scholar 

  27. Kiss, D., Podladchikov, Y., Duretz, T., and Schmalholz, S.M., Spontaneous generation of ductile shear zones by thermal softening: Localization criterion, 1D to 3D modelling and application to the lithosphere, Earth Planet. Sci. Lett., 2019, vol. 519, pp. 284–296.

    Article  CAS  Google Scholar 

  28. Kohlstedt, D.L., Evans, B., and Mackwell, S.J., Strength of the lithosphere - constraints imposed by laboratory experiments, J. Geophys. Res., 1995, vol. 100, no. B9, pp. 17587–17602.

    Article  Google Scholar 

  29. Langemeyer, S.M., Lowman, J.P., and Tackley, P.J., Global mantle convection models produce transform offsets along divergent plate boundaries, Commun. Earth Environ., 2021, vol. 2, no. 1. https://doi.org/10.1038/s43247-021-00139-1

  30. Molnar, P. and Lyon-Caen, H., Some simple physical aspects of the support, structure and evolution of mountain belts, Geol. Soc. Amer. Spec. Pap., 1988, vol. 218, pp. 17–207

    Google Scholar 

  31. Moore, D.E., Lockner, L.D.A., Summers, R., Shengli, M., and Byerlee, J.D., Strength of chrysotile–serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault? Geology, 1996, vol. 24, 1041–1044.

    Article  CAS  Google Scholar 

  32. Moreno, M., Haberland, C., Oncken, O., Rietbrock, A., Angiboust, S., and Heidbach, O., Locking of the Chile subduction zone controlled by fluid pressure before the 2010 earthquake, Nat. Geosci., 2014, vol. 7, no. 4, pp. 292–296. https://doi.org/10.1038/ngeo2102

    Article  CAS  Google Scholar 

  33. Moreno, M., Li, S., Melnick, D., et al., Chilean megathrust earthquake recurrence linked to frictional contrast at depth, Nat. Geosci., 2018, vol. 11, no. 4, pp. 285–290. https://doi.org/10.1038/s41561-018-0089-5

    Article  CAS  Google Scholar 

  34. Moresi, L. and Solomatov, V., Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus, Geophys. J. Int., 1998, vol. 133, pp. 669–682.

    Article  Google Scholar 

  35. Nakagawa, T. and Karato, S., Influence of realistic rheological properties on the style of mantle convection: roles of dynamic friction and depth-dependence of rheological properties, Geophys. J. Int., 2021, vol. 226, pp. 1986–1996. https://doi.org/10.1093/gji/ggab197

    Article  Google Scholar 

  36. Olsson, J.R., Söderlund, U., Hamilton, M.A., Klausen, M.B., and Helffrich, G.R., A late Archaean radiating dyke swarm as possible clue to the origin of the Bushveld Complex, Nat. Geosci., 2011, vol. 4, pp. 865–869.

    Article  CAS  Google Scholar 

  37. Pedersen, R., Sigmundsson, F., and Einarsson, P., Controlling factors on earthquake swarms associated with magmatic intrusions; Constraints from Iceland, J. Volcanol. Geotherm. Res., 2007, vol. 162, pp. 73–80.

    Article  CAS  Google Scholar 

  38. Petri, B., Duretz, T., Mohn, G., Schmalholz, S.M., Karner, G.D., and Müntener, O., Thinning mechanisms of heterogeneous continental lithosphere, Earth Planet. Sci. Lett., 2019, vol. 512, pp. 147–162.

    Article  CAS  Google Scholar 

  39. Petrini, C., Gerya, T., Yarushina, V., van Dinther, Y., Connolly, J., and Madonna, C., Seismo-hydro-mechanical modelling of the seismic cycle: Methodology and implications for subduction zone seismicity, Tectonophys., 2020, vol. 791, article no. 228504.

  40. Regenauer-Lieb, K., Weinberg, R.F., and Rosenbaum, G., The effect of energy feedbacks on continental strength, Nature, 2006, vol. 442, pp. 67–70.

    Article  CAS  Google Scholar 

  41. Reinen, L.A., Seismic and aseismic slip indicators in serpentinite gouge, Geology, 2000, vol. 28, pp. 135–138.

    Article  Google Scholar 

  42. Reinen, L.A., Weeks, J.D., and Tullis, T.E., The frictional behavior of lizardite and antigorite serpentinites: Experiments, constitutive models, and implications for natural faults, Pure Appl. Geophys., 1994, vol. 143, pp. 318–358.

    Article  Google Scholar 

  43. Schmalholz, S.M., Medvedev, S., Lechmann, S.M., and Podladchikov, Y., Relationship between tectonic overpressure, deviatoric stress, driving force, isostasy and gravitational potential energy. Geophys. J. Int., 2014, vol. 197, pp. 680–696.

    Article  Google Scholar 

  44. Scholz, C.H., and Campos, J., The seismic coupling of subduction zones revisited, J. Geophys. Res., 2012, vol. 117, article no. B05310. https://doi.org/10.1029/2011JB009003

    Article  Google Scholar 

  45. Sigmundsson, F., Hreinsdóttir, S., Hooper, A., et al., Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption, Nature, 2010, vol. 468, pp. 426–430.

    Article  CAS  Google Scholar 

  46. Sizova, E., Gerya, T., Brown, M., and Perchuk, L.L., Subduction styles in the Precambrian: Insight from numerical experiments, Lithos, 2010, vol. 116, pp. 209–229.

    Article  CAS  Google Scholar 

  47. Sobolev, S.V. and Babeyko, A.Y., What drives orogeny in the Andes? Geology, 2005, vol. 33, pp. 617–620.

    Article  Google Scholar 

  48. Tackley, P.J., Self-consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations. Part 1: Pseudo-plastic yielding, Geochem., Geophys., Geosyst., 2000, vol. 1, article no. 2000GC000036.

  49. Tackley, P.J., Tectono-convective modes on earth and other terrestrial bodies, In: Dynamics of Plate Tectonics and Mantle Convection, Duarte, J., Eds., (Elsevier, 2023), pp. 159–180.

    Google Scholar 

  50. van Dinther, Y., Gerya, T.V., Dalguer, L.A., Mai, P.M., Morra, G., and Giardini, D., The seismic cycle at subduction thrusts: Insights from seismo-thermo-mechanical models, J. Geophys. Res., 2013, vol. 118, pp. 1502–1525.

    Article  Google Scholar 

Download references

Funding

This work was supported by SNF Research Grant 200021_192296 and by ILP Task Force “Bio-geodynamics of the Lithosphere”. Yuriy Podladchikov is thanked for constructive review and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taras Gerya.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerya, T. Large-scale-long-term Strength of the Lithosphere: New Theory and Applications. Petrology 32, 128–141 (2024). https://doi.org/10.1134/S086959112401003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959112401003X

Keywords:

Navigation