Skip to main content
Log in

Low Crustal Fluid Reservoirs in Ultramafic Cumulates of Kamchatka

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Based on published geophysical and petrological data, lower crustal fluid reservoirs have been proposed below the Klyuchevskoy Volcano, expressed as a low Vp/Vs anomaly. A high Vp/Vs anomaly under the proposed fluid reservoir is interpreted as a zone of magma accumulation. The localization of fluids in these reservoirs in the ductile lower crust can vary from isolated inclusions to filling of microfractures over a time scale of several months. Using a simplified poroelastic model, it is shown that the transition in the topology of pore space filled with fluid or melt can provide the observed changes in Vp/Vs in the anomalies of high and low values at a melt content of several vol % and fluid content less than 1 vol %, respectively. In zones of active volcanism, such as the Klyuchevskaya group of volcanoes (KGV), fluid reservoirs are localized in ultramafic cumulates formed during the early high-temperature stage of magma fractionation. Ultramafic xenoliths in the products of eruptions of the KGV and Avachinsky volcanoes, often interpreted as mantle rocks, formed at pressures of about 5 kbar or depths of about 18–20 km in accordance with two-pyroxene geo-thermobarometry and the content of volatiles in melt inclusions in olivine and spinel. When crossing by ascending magmas, the fluid-containing reservoir experiences mechanical failure and injects a certain amount of fluid into the magma, which then captures pieces of crushed magmatic cumulates. The composition of melt inclusions in olivine can reveal records of the magma-fluid interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Ba, J., Xu, W., Fu, L.Y., Carcione, J.M., and Zhang, L., Rock anelasticity due to patchy saturation and fabric heterogeneity: a double porosity model of wave propagation, J. Geophys. Res.: Solid Earth, 2017, vol. 122, no. 3, pp. 1949–1976. https://doi.org/10.1002/2016JB013882

    Article  Google Scholar 

  2. Bejina, F., Bystricky, M., Terce, N., Whitaker, M., and Chen, H., Equation of state and sound wave velocities of fayalite at high pressures and temperatures: implications for the seismic properties of the martian mantle, Eur. J. Mineral., 2021, vol. 33, no. 4, pp. 519–535.

    Article  Google Scholar 

  3. Bekaert, D.V., Turner, S.J., Broadley, M.W., Barnes, J.D., Halldorsson, S.A., Labidi, J., Wade, J., Walowski, K.J., and Barry, P.H., Subduction-driven volatile recycling: a global mass balance, Annu. Rev. Earth Planet. Sci., 2021, vol. 49, pp. 37–70.

    Article  Google Scholar 

  4. Bénard, A., Nebel, O., Ionov, D.A., Arculus, R.J., Shimizu, N., and Métrich, N., Primary silica-rich picrite and high-Ca boninite melt inclusions in pyroxenite veins from the Kamchatka sub-arc mantle, J. Petrol., 2016, vol. 57, no. 10, pp. 1955–1982.

    Article  Google Scholar 

  5. Berryman, J.G., Long-wavelength propagation in composite elastic media II. Ellipsoidal inclusions, J. Acoust. Soc. Am., 1980, vol. 68, no. 6, pp. 1820–1831.

    Article  Google Scholar 

  6. Berryman, J.G., Mixture theories for rock properties, Rock Physics and Phase Relations: A Handbook of Physical Constants, Ahrens, T.J., Ed., Washington, American Geophysical Union, 1995, vol. 3, pp. 205–228.

    Google Scholar 

  7. Brace, W.F. and Kohlstedt, D.L., Limits on lithospheric stress imposed by laboratory experiments, J. Geophys. Res.” Solid Earth, 1980, vol. 85, no. B11, pp. 6248–6252.

    Google Scholar 

  8. Breeding, C.M. and Ague, J.J., Slab-derived fluids and quartz-vein formation in an accretionary prism, Otago Schist, New Zealand, Geology, 2002, vol. 30, no. 6, pp. 499–502.

    Article  Google Scholar 

  9. Burton, M.R. and Sawyer, G.M., Deep Carbon Emissions from Volcanoes, Rev. Mineral. Geochem., 2013, vol. 75, pp. 323–354.

    Article  Google Scholar 

  10. Caricchi, L., Sheldrake, T.E., and Blundy, J., Modulation of magmatic processes by CO2 flushing, Earth Planet. Sci. Lett., 2018, vol. 491, pp. 160–171.

    Article  Google Scholar 

  11. Carlson, R.L. and Miller, D.J., Mantle wedge water contents estimated from seismic velocities in partially serpentinized peridotites, Geophys. Res. Lett., 2003, vol. 30, no. 5, pp. 1250. https://doi.org/10.1029/2002GL016600

  12. Cheng, A.H.D., Poroelasticity. Theory and Applications of Transport in Porous Media, Springer Int. Publ., 2016, vol. 27. https://doi.org/10.1007/978-3-319-25202-5

  13. Connolly, J.A.D. and Podladchikov, Y.Y., A hydromechanical model for lower crustal fluid flow, Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences, Berlin–Heidelberg: Springer, 2013, pp. 599–656. https://doi.org/10.1007/978-3-642-28394-9_14.

  14. Cosenza, P., Ghoreychi, M., de Marsily, G., Vasseur, G., and Violette, S., Theoretical prediction of poroelastic properties of argillaceous rocks from in situ specific storage coefficient, Water Resour. Res., 2002, vol. 38, no. 10, pp. 25-1–25-12. https://doi.org/10.1029/2001WR001201

  15. Créon, L., Rouchon, V., Youssef, S., Rosenberg, E., Delpech, G., Szabo, C., Remusat, L., Mostefaoui, S., Asimow, P.D., Antoshechkina, P.M., Ghiorso, M.S., Boller, E., and Guyot, F., Highly CO2-supersaturated melts in the Pannonian lithospheric mantle-A transient carbon reservoir?, Lithos, 2016, vol. 286, pp. 519–533. https://doi.org/10.1016/j.lithos.2016.12.009

    Article  Google Scholar 

  16. Créon, L., Delpech, G., Rouchon, V., and Guyot, F., Slab-derived metasomatism in the Carpathian-Pannonian mantle revealed by investigations of mantle xenoliths from the Bakony-Balaton Highland Volcanic Field, Lithos, 2017, vol. 286, pp. 534–552.

    Article  Google Scholar 

  17. Davies, J.H., Global map of solid Earth surface heat flow, Geochem., Geophys., Geosyst., 2013, vol. 14, no. 10, pp. 4608–4622. https://doi.org/10.1002/ggge.20271

    Article  Google Scholar 

  18. Davydova, V.O., Plechov, P.Yu., Shcherbakov, V.D., and Perepelov, A.B., High-K basaltic trachyandesite xenoliths in pyroclastic deposits from the Bezymianny volcano (Kamchatka), Russ. Geol. Geophys., 2018, vol. 59, no. 9, pp. 1087–1099.

    Article  Google Scholar 

  19. Fedotov, S.A., Zharinov, N.A., and Gontovaya, L.I., The magmatic system of the Klyuchevskaya group of volcanoes inferred from data on its eruptions, earthquakes, deformation, and deep structure, J. Volcanol. Seismol., 2010, vol. 4, pp. 1–33.

    Article  Google Scholar 

  20. Gudmundsson, A., Deflection of dykes into sills at discontinuities and magma-chamber formation, Tectonophysics, 2011, vol. 500, nos. 1–4, pp. 50–64.

    Article  Google Scholar 

  21. Gunasekera, R.C., Foulger, G.R., and Julian, B.R., Reservoir depletion at the Geysers geothermal area, California, shown by four-dimensional seismic tomography, J. Geophys. Res.: Solid Earth, 2003, vol. 108, no. B3. https://doi.org/10.1029/2001JB000638

  22. Guo, Z., Qin, X., Zhang, Y., Niu, C., Wang, D., and Ling, Y., Numerical investigation of the effect of heterogeneous pore structures on elastic properties of tight gas sandstones, Front. Earth Sci., 2021, vol. 9, p. 641637. https://doi.org/10.3389/feart.2021.641637

    Article  Google Scholar 

  23. Gurenko, A.A., Origin of sulphur in relation to silicate-sulphide immiscibility in Tolbachik primitive arc magma (Kamchatka, Russia): Insights from sulphur and boron isotopes, Chem. Geol., 2021, vol. 576, pp. 120244.

    Article  Google Scholar 

  24. Hirth, G. and Kohlstedt, D., Rheology of the upper mantle and the mantle wedge: a view from the experimentalists, Inside the Subduction Factory, Eiler, J., Eds., 2013.https://doi.org/10.1029/138GM06.

  25. Hong-Bing, L.I., Jia-Jia, Z., and Feng-Chang, Y.A.O., Inversion of effective pore aspect ratios for porous rocks and its applications, Chin. J. Geophys., 2013, vol. 56, no. 1, pp. 43–51.

    Article  Google Scholar 

  26. Horváth, F., Musitz, B., Balázs, A., Végh, A., Uhrin, A., Nádor, A., Koroknai, B., Pap, N., Tóth, T., and Wórum, G., Evolution of the Pannonian basin and its geothermal resources, Geothermics, 2015, vol. 53, pp. 328–352.

    Article  Google Scholar 

  27. Ionov, D.A., Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka, J. Petrol., 2010, vol. 51, nos. 1–2, pp. 327–361. https//doi.org/https://doi.org/10.1093/petrology/egp090

    Article  Google Scholar 

  28. Ionov, D.A., Bénard, A., Plechov, P.Yu., and Shcherbakov, V.D., Along-arc variations in lithospheric mantle compositions in Kamchatka, Russia: first trace element data on mantle xenoliths from the Klyuchevskoy Group volcanoes, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 122–131.https://doi.org/10.1016/j.jvolgeores.2012.12.022

    Article  Google Scholar 

  29. Ishimaru, S., Arai, S., Ishida, Y., Shirasaka, M., and Okrugin, V.M., Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, southern Kamchatka, J. Petrol., 2007, vol. 48, no. 2, pp. 395–433.

    Article  Google Scholar 

  30. Ishimaru, S. and Arai, S., Calcic amphiboles in peridotite xenoliths from Avacha volcano, Kamchatka, and their implications for metasomatic conditions in the mantle wedge, Geological Society, London, Special Publications, 2008a, vol. 293, no. 1, pp. 35–55. https://doi.org/10.1144/SP293.3

    Article  Google Scholar 

  31. Ishimaru, S. and Arai, S., Nickel enrichment in mantle olivine beneath a volcanic front, Contrib. Mineral. Petrol., 2008b, vol. 156, pp. 119–131. https://doi.org/10.1007/s00410-007-0277-6

    Article  Google Scholar 

  32. Ishimaru, S., Arai, S., and Shukuno, H., Metal-saturated peridotite in the mantle wedge inferred from metal-bearing peridotite xenoliths from Avacha volcano, Kamchatka, Earth Planet. Sci. Lett., 2009, vol. 284, nos. 3–4, pp. 352–360.

    Article  Google Scholar 

  33. Kavanagh, J.L., Menand, T., and Sparks, R.S.J., An experimental investigation of sill formation and propagation in layered elastic media, Earth and Planetary Science Letters, 2006, vol. 245, nos. 3–4, pp. 799–813.

    Article  Google Scholar 

  34. Kennedy, B.M. and van Soest, M.C., Flow of mantle fluids through the ductile lower crust: helium isotope trends, Science, 2007, vol. 318, no. 5855, pp. 1433–1436.

    Article  Google Scholar 

  35. Kerrick, D.M. and Jacobs, G.K., A modified Redlich-Kwong equation of state for H2O, CO2, and H2O–CO2 mixtures at elevated pressures and temperatures, American Journal of Science, 1981, vol. 281, pp. 735–767.

    Article  Google Scholar 

  36. Khubunaya, S.A., Gontovaya, L.I., Sobolev, A.V., and Nizkous, I.V., Magma Chambers beneath the Klyuchevskoy Volcanic Group (Kamchatka), J. Volcanol. Seismol., 2007, vol. 1, no. 2, pp. 98–118.

    Article  Google Scholar 

  37. Kiryukhin, A., Chernykh, E., Polyakov, A., and Solomatin, A., Magma fracking beneath active volcanoes based on seismic data and hydrothermal activity observations, Geosci., 2020, vol. 10, no. 2, pp. 52. https://doi.org/10.3390/geosciences10020052

    Article  Google Scholar 

  38. Koulakov, I., Multiscale seismic tomography imaging of volcanic complexes, Updates in Volcanology: A Comprehensive Approach to Volcanological Problems, 2012, vol. 1, pp. 207–242. https://doi.org/10.5772/24653

  39. Koulakov, I., Gordeev, E.I., Dobretsov, N.L., Vernikovsky, V.A., Senyukov, S., Jakovlev, A., and Jaxybulatov, K., Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography, J. Volcanol. Geotherm. Res., 2013, vol. 263, pp. 75–91.

    Article  Google Scholar 

  40. Koulakov, I., Abkadyrov, I., Al Arifi, N., Deev, E., Droznina, S., and Gordeev, E.I., . West, M., Three different types of plumbing system beneath the neighboring active volcanoes of Tolbachik, Bezymianny, and Klyuchevskoy in Kamchatka, J. Geophys. Res: Solid Earth, 2017, vol. 122, no. 5, pp. 3852–3874. https://doi.org/10.1002/2017JB014082

    Article  Google Scholar 

  41. Levin, V., Park, J., Brandon, M., Lees, J., Peyton, V., Gordeev, E., and Ozerov, A., Crust and upper mantle of Kamchatka from teleseismic receiver functions, Tectonophysics, 2002, vol. 358, nos. 1–4, pp. 233–265.

    Article  Google Scholar 

  42. Li, J., Ding, X., and Liu, J., The role of fluids in melting the continental crust and generating granitoids: an overview, Geosci., 2022, vol. 12, no. 8, pp. 285. https://doi.org/10.3390/geosciences12080285

    Article  Google Scholar 

  43. Maclennan, J., Jull, M., McKenzie, D., Slater, L., and Gronvold, K., The link between volcanism and deglaciation in Iceland, Geochem., Geophys., Geosyst., 2002, vol. 3, no. 11, pp. 1–25. https://doi.org/10.1029/2001GC000282

    Article  Google Scholar 

  44. Markl, G. and Bucher, K., Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks, Nature, 1998, vol. 391, no. 6669, pp. 781–783.

    Article  Google Scholar 

  45. McGuire, A.V., Dyar, M.D., and Nielson, J.E., Metasomatic oxidation of upper mantle periodotite, Contrib. Mineral. Petrol., 1991, vol. 109, pp. 252–264.

    Article  Google Scholar 

  46. Moroz, Y.F. and Gontovaya, L.I., Deep structure of Kamchatka according to the results of MT sounding and seismic tomography, Russ. J. Pac. Geol., 2017, vol. 11, pp. 354–367.

    Article  Google Scholar 

  47. Moroz, Y.F. and Loginov, V.A., A geoelectric model for the area of the Tolbachik eruption (named after the 50 year anniversary of the Institute of Volcanology and Seismology), J. Volcanol. Seismol., 2016, vol. 10, pp. 292–304. https://doi.org/10.1134/S0742046316050055

    Article  Google Scholar 

  48. Moroz, Y.F. and Loginov, V.A., Deep geoelectrical model of the Avacha–Koryaksky group of volcanoes, Kamchatka, Vestn. KRAUNTs. Nauki o Zemle, 2019, vol. 2, no. 42, pp. 9–24.

  49. Nakajima, J., Matsuzawa, T., Hasegawa, A., and Zhao, D., Seismic imaging of arc magma and fluids under the central part of northeastern Japan, Tectonophysics, 2001, vol. 341, no. 1–4, pp. 1–17.

  50. Ozerov, A.Yu., The evolution of high-alumina basalts of the Klyuchevskoy volcano, Kamchatka, Russia, based on microprobe analyses of mineral inclusions, J. Volcanol. Geotherm. Res., 2000, vol. 95, pp. 65–79.

    Article  Google Scholar 

  51. Pagli, C. and Sigmundsson, F., Will present day glacier retreat increase volcanic activity? Stress induced by recent glacier retreat and its effect on magmatism at the Vatnajokull ice cap, Iceland, Geophys. Res. Lett., 2008, vol. 35, no. 9, p. L09304. https://doi.org/10.1029/2008GL033510

    Article  Google Scholar 

  52. Pan, V., Holloway, J.R., and Hervig, R.L., The pressure and temperature dependence of carbon dioxide solubility in tholeiitic basalt melts, Geochim. Cosmochim. Acta, 1991, vol. 55, no. 6, pp. 1587–1595.

    Article  Google Scholar 

  53. Paterson, M.S. and Wong, T.-F., Brittle-ductile transition, Experimental Rock Deformation—the Brittle Field, 2nd Ed., Berlin–Heidelberg–New York: Springer-Verlag, 2005, pp. 211–237.

    Google Scholar 

  54. Plechov, P.Yu., Shishkina, T.A., Ermakov, V.A., and Portnyagin, M.V., Formation conditions of allivalites, olivine-anorthite crystal enclaves, in the volcanics of the Kuril-Kamchatka Arc, Petrology, 2008, vol. 16, no. 3.

  55. Ponomareva, V., Portnyagin, M., Derkachev, A., Pendea, I.F., Bourgeois, J., Reimer, P.J., and Nurnberg, D., Early Holocene M~6 explosive eruption from Plosky volcanic massif (Kamchatka) and its tephra as a link between terrestrial and marine paleoenvironmental records, Int. J. Earth Sci., 2013, vol. 102, pp. 1673–1699.

    Article  Google Scholar 

  56. Portnyagin, M., Mironov, N., Botcharnikov, R., Gurenko, A., Almeev, R.R., Luft, C., and Holtz, F., Dehydration of melt inclusions in olivine and implications for the origin of silica-undersaturated island-arc melts, Earth Planet. Sci. Lett., 2019, vol. 517, pp. 95–105.

    Article  Google Scholar 

  57. Putirka, K.D., Thermometers and barometers for volcanic systems, Rev. Mineral. Geochem., 2008, vol. 69, no. 1, pp. 61–120.

    Article  Google Scholar 

  58. Putnis, A. and Austrheim, H., Fluid-induced processes: metasomatism and metamorphism, Geofluids, 2010, vol. 10, nos. 1–2, pp. 254–269. https://doi.org/10.1111/j.1468-8123.2010.00285.x

    Article  Google Scholar 

  59. Safonov, O.G., Butvina, V.G., Limanov, E.V., and Kosova, S.A., Mineral indicators of reactions involving fluid salt components in the deep lithosphere, Petrology, 2019, vol. 27, no. 5, pp. 489–515.

    Article  Google Scholar 

  60. Schmeling, H., Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity, Phys. Earth Planet. Inter., 1985, vol. 41, no. 1, pp. 34–57.

    Article  Google Scholar 

  61. Schuler, J., Greenfield, T., White, R.S., Roecker, S.W., Brandsdyttir, B., Stock, J.M., Tarasewicz, J., Martens, H.R., and Pugh, D., Seismic imaging of the shallow crust beneath the Krafla central volcano, NE Iceland, J. Geophys. Res., 2015, vol. 120, pp. 7156–7173.

    Article  Google Scholar 

  62. Shishkina, T.A., Botcharnikov, R.E., Holtz, F., Almeev, R.R., and Portnyagin, M.V., Solubility of H2O-and CO2-bearing fluids in tholeiitic basalts at pressures up to 500 MPa, Chem. Geol., 2010, vol. 277, no. 1–2, pp. 115–125.

    Article  Google Scholar 

  63. de Silva, S.L. and Gosnold, W.D., Episodic construction of batholiths: Insights from the spatiotemporal development of an ignimbrite flare-up, J. Volcanol. Geotherm. Res., 2007, vol. 167, nos. 1–4, pp. 320–335.

    Article  Google Scholar 

  64. Simakin, A.G. and Bindeman, I.N., Convective melting and water behavior around magmatic–hydrothermal transition: numerical modeling with application to Krafla Volcano, Iceland, J. Petrol., 2022, vol. 63, pp. 1–22.

    Article  Google Scholar 

  65. Simakin, A. and Ghassemi, A., A visco-poroelastic model with strain-history dependent rheology: application to geomechanics, Gulf Rocks, 2004, the 6th North America Rock Mechanics Symposium (NARMS), OnePetro, 2004.

  66. Simakin, A.G. and Shaposhnikova, O.Y., Novel amphibole geobarometer for high-magnesium andesite and basalt magmas, Petrology, 2017, vol. 25, no. 2, pp. 226.

    Article  Google Scholar 

  67. Simakin, A.G. and Murav’ev, Y.D., The relationship between glaciation and volcanism: Numerical simulation and the Holocene volcanism in Kamchatka, J. Volcanol. Seismol., 2017, vol. 11, pp. 187–205.

    Article  Google Scholar 

  68. Simakin, A., Salova, T., Devyatova, V., and Zelensky, M., Reduced carbonic fluid and possible nature of high-K magmas of Tolbachik, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 210–221.

    Article  Google Scholar 

  69. Simakin, A.G., Devyatova, V.N., Salova, T.P., and Shaposhnikova, O.Y., Experimental study of amphibole crystallization from the highly magnesian melt of Shiveluch Volcano, Kamchatka, Petrology, 2019, vol. 27, pp. 442–459. https://doi.org/10.1134/S0869591119050072

    Article  Google Scholar 

  70. Takei, Y., Effect of pore geometry on VP/VS: From equilibrium geometry to crack, Journal of Geophysical Research: Solid Earth, 2002, vol. 107, no. B2 pp. ECV 6-1–ECV 6-12. https://doi.org/10.1029/2001JB000522

  71. Torok, K., Degic, J., Szep, A., and Marosi, G., Reduced carbonic fluids in mafic granulite xenoliths from the Bakony–Balaton Highland Volcanic Field, W-Hungary, Chemical Geology, 2005, vol. 223, nos. 1–3, pp. 93–108.

    Article  Google Scholar 

  72. Wannamaker, P.E., Caldwell, T.G., Jiracek, G.R., Maris, V., Hill, G.J., Ogawa, Y., Bibby, H.M., Bennie, S.L., and Heise, W., Fluid and deformation regime of an advancing subduction system at Marlborough, New Zealand, Nature, 2009, vol. 460, no. 7256, pp. 733–736. https://doi.org/10.1038/nature08204

    Article  Google Scholar 

  73. Wilshire, H.G., Pike, J.E.N., Meyer, C.E., and Schwarzman, E.C., Amphibole-rich veins in lherzolite xenoliths, Dish Hill and Deadman Lake, California, Am. J. Sci., 1980, vol. 280, pp. 576–593.

    Google Scholar 

  74. Wu, T.T., The effect of inclusion shape on the elastic moduli of a two-phase material, Int. J. Solids Struct., 1966, vol. 2, no. 1, pp. 1–8.

    Article  Google Scholar 

  75. Yardley, B.W.D., The role of water in the evolution of the continental crust, J. Geol. Soc., 2009, vol. 166, no. 4, pp. 585–600.

    Article  Google Scholar 

  76. Yardley, B.W.D. and Valley, J.W., The petrologic case for a dry lower crust, J. Geophys. Res.: Solid Earth, 1997, vol. 102, no. B6, pp. 12173–12185.

    Article  Google Scholar 

  77. Zelenski, M., Kamenetsky, V.S., Nekrylov, N., and Kontonikas-Charos, A., High sulfur in primitive arc magmas, its origin and implications, Minerals, 2021, vol. 12, no. 1, p. 37. https://doi.org/10.3390/min12010037

    Article  Google Scholar 

  78. Zencher, F., Bonafede, M., and Stefansson, R., Near-lithostatic pore pressure at seismogenic depths: a thermoporoelastic model, Geophys. J. Int., 2006, vol. 166, no. 3, pp. 1318–1334. https://doi.org/10.1111/j.1365-246X.2006.03069.x

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Yury Taran for useful criticism of the early version of this work and Alexey Ariskin for a comprehensive review of the final version of MS. Vera Devyatova made an invaluable contribution to the analysis of the mafic xenoliths and inclusions of the Shiveluch volcano, which aroused interest in the crustal cumulates of Kamchatka. AGS is grateful to Maria Tolstykh and Andrey Babansky for the opportunity to visit the volcanoes of Northern Kamchatka during the 2007 field works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Simakin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simakin, A.G., Shaposhikova, O.Y. Low Crustal Fluid Reservoirs in Ultramafic Cumulates of Kamchatka. Petrology 31, 705–717 (2023). https://doi.org/10.1134/S0869591123060036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123060036

Keywords:

Navigation