Skip to main content
Log in

Native Iron in Siberian Traps

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The study of trap intrusions with a large-scale occurrence of native iron allowed us to identify general features in their composition and origin. Intrusive bodies are weakly differentiated and have similar structure and mineralogical, petrochemical and geochemical composition. Two associations of rock-forming minerals were found in all studied bodies: early deep-seated (pre-chamber) and intra-chamber. Native iron forms nodular segregations, with a subordinate amount of cohenite, troilite and magnetite–wüstite. Metallic iron can accumulate Ni, Co, Au, and PGE. Their content in metal increases by hundreds or even thousands of times compared to host silicate rock. The formation of native iron is based on the fluid-magmatic interaction between magma and reducing components of the fluid, mainly of methane–hydrogen composition. As a result, an initially homogeneous basalt liquid is dispersed into silicate and metallic components. In the course of transportation, finely dispersed iron phases form droplet-liquid segregations with a monomolecular gas layer on their surface, thus preventing enlargement of metallic droplets. In the hypabyssal chamber, magma, including metallic spherules, is degassed, and droplets are merged to form nodular segregations of native iron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Notes

  1. In this work, the Khungtukun intrusion combines three objects, the sections of which are recovered by the Khungtukun (exp. Dzh-31–Dzh-39) and Khininda (exp. Dzh-47–Dzh-49) creeks and Maimecha River (exp. Dzh-42–Dzh-45), and were previously described under these names as independent bodies (Samorodnoe …, 1985). More detailed studies of the intrusions and prospecting data showed that these are exposures of an extended stratal body, which were separated by denudation processes.

REFERENCES

  1. Bazhenov, I.K., Indukaev, Yu.V., and Yakhno, A.V., Native iron in the gabbrodolerites of the Kureika R., Krasnoayrsk Krai, Zap. Vsesoyuz. Mineral. O-va, 1959, vol. 88, no. 2, pp. 180–184.

    Google Scholar 

  2. Bird, J.M. and Weathers, M.S., Native iron occurrences of Disko Island, Greenland, J. Geol., 1977, vol. 85, pp. 359–371.

    Article  Google Scholar 

  3. Borisov, A.A., Habit of metallic iron in experimental glasses: do you believe your eyes?, Petrology, 2021, vol. 29, no. 1, pp. 89–94.

    Article  Google Scholar 

  4. Buslaeva E.Yu., Novgorodova M.I. Elementoorganicheskie soedineniya v probleme migratsii rudnogo veshchestva (Heteroorganic Compounds in the Problem of Ore Migration), Moscow: Nauka, 1989.

  5. Danilov, M.A. and Yushkin, N.P., First find of Oligocene lavas in native iron in the northern Russian Platform, Dokl. Akad. Nauk SSSR, 1979, vol. 249, no. 6, pp. 1430–1432.

    Google Scholar 

  6. Frolov, Yu.G., Kurs kolloidnoi khimii. Poverkhnostnye yavleniya i dispersnye sistemy (Course of Colloid Chemistry. Surface Phenomena and Dispersed Systems), Moscow: Khimiya, 1982.

  7. Goodrich, C.A. and Bird, J.M., Formation of iron-carbon alloys in basaltic magma at Uivfaq, Disco Island: the role of carbon in mafic magmas, J. Geol., 1985, vol. 934, pp. 75–492.

    Google Scholar 

  8. Howarth, G.H., Day, J.M.D., Pernet-Fisher, J.F., et al., Precious metal enrichment at low-redox in terrestrial native Fe-bearing basalts investigated using laser-ablation ICP-MS, Geochim. Cosmochim. Acta, 2017, vol. 203, pp. 343–363.

    Article  Google Scholar 

  9. Iacono-Marziano, G., Gaillard, F., Scaillet, B., et al., Extremely reducing conditions reached during basaltic intrusion in organic matter-bearing sediments, Earth Planet. Sci. Lett., 2012, pp. 319–326.

  10. Jin-Xiang, Xiong., Qing, Gain., Sarah, E.M., et al., Immiscible metallic melts in the deep earth: clues from moissanite (SiC) in volcanic rocks, Sci. Bull., 2020, no. 65, pp. 1479–1498.

  11. Kamenetsky, V.S., Charlier, B., Zhitova, L., et al., Magma chamber-scale liquid immiscibility in the Siberian traps represented by melt pools in native iron, Geology, 2013, vol. 41, no. 10, pp. 1091–1094.

    Article  Google Scholar 

  12. Kopylova, A.G. and Vasilyeva, A.E., The new discovery of native iron in traps of the Siberia, IOP Conference Series: Earth and Environmental Science, Prague: IOP Publishing, 2020. https://doi.org/10.1088/1755-1315/609/1/012074

  13. Korzhinskii, D.S., Petrographic problems of magmatic rocks related to the trans-magmatic solutios and granitization, Magmatizm i svyaz' s nimi poleznykh iskopaemykh (Magmatism and Relation with Mineral Resources), Moscow: Izd-vo AN SSSR, 1955, pp. 220–234.

    Google Scholar 

  14. Kuznetsov, Yu.A. and Izokh, E.P., Geological evidence for intratelluric flows of heat and matter as agents of metamorphism and magma formation, Problemy petrologii i geneticheskoi mineralogii (Problems of Petrology and Genetic Mineralogy), Moscow: Nauka, 1969, vol. 1, pp. 7–20.

    Google Scholar 

  15. Larin, V.N., Gipoteza iznachal’no gidridnoi Zemli (novaya global’naya kontseptsiya) (Hypothesis of the Initial Hybrid Earth (New Global Concept), Moscow: Nedra, 1980.

  16. Levashov, V.K. and Okrugin, A.V., Assessment of physical conditions of formation of native iron segregations in basaltic melt, Geokhimiya i mineralogiya bazitov i ul’trabazitov Sibirskoi platform (Geochemistry and Mineralogy of Mafic and Ultramafic Rocks of the Siberian Platform), Yakutsk, 1984, pp. 54–62.

    Google Scholar 

  17. Levashov, V.K. and Oleinikov, B.V., Terrestrial cliftonite in association with native iron of the gabbrodolerites of Mt. Ozernaya (Siberian Platform), Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 3, pp. 719–722.

    Google Scholar 

  18. Levashov, V.K., Tomshin, M.D., and Glushkov, V.M., New occurrence of native iron at the Siberian Platform, Samorodnoe metalloobrazovanie v magmaticheskom protsesse (Native Metal Formation in Magmatic Process),Yakutsk: YaNTs SORAN, 1991, pp. 4–9.

  19. Mann, U., Frost, D.J., Rubie, D.C., et al., Partitioning of Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures and high temperatures-implications for the origin of highly siderophile element concentrations in the Earth’s mantle, Geochim. Cosmochim. Acta, 2012, vol. 84, pp. 593–613.

    Article  Google Scholar 

  20. Melson, W.G. and Switzer, C., Plagioclase–spinel–graphite xenoliths in metallic iron-bearing basalts, Disko Island, Greenland, Am. Mineral., 1966, vol. 51, nos. 5–6, pp. 664–676.

    Google Scholar 

  21. Nordenskiöld, A.E., Redogörelse för en Ekspedition till Grönland aar, 1870.

  22. Novgorodova, M.I., Samorodnye metally v gidrotermal’nykh rudakh (Native Metals in Hydrothermal Ores), Moscow: Nauka, 1983.

  23. Okrugin, A.V., Accessory Minerals of the Early Magmatic Stage in the Evolution of Mafic Rocks of the Siberian Platform, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Leningrad, 1982.

  24. Oleinikov, B.V. and Kopylova, A.G., Gold in metallic phase of terrestrial mafic rocks, Dokl. Akad. Nauk SSSR, 1995, vol. 345, no. 5, pp. 600–602.

    Google Scholar 

  25. Oleinikov, B.V. and Kopylova, A.G., New genetic type of noble-metal mineralization in trap intrusions of the northern Siberian Platform, Otechestvennaya Geol., 2000, no. 5, pp. 21–23.

  26. Oleinikov, B.V. and Okrugin, A.V.,Ferritization of mafic melt and its petrological significance, Mineralogiya i geokhimiya ul’traosnovnykh i bazitovykh porod Yakutii (Mineralogy and Geochemistry of Ultramafic and Mafic Rocks of Yakutia), Yakutsk: YaNTs SO RAN, 1981, pp. 5–19.

  27. Oleinikov, B.V. and Tomshin, M.D., Deep differentiation of magma of platform mafic rocks, Dokl. Akad. Nauk SSSR, 1976, vol. 231, no. 1, pp. 177–180.

    Google Scholar 

  28. Oleinikov, B.V., Okrugin, A.V., Tomshin, M.D., and Levashov, V.K., Native metal formation in platform mafic rocks, Samorodnye metally v izverzhennykh porodakh (Native Metals and Igneous Rocks), Yakutsk, 1985, vol. 1, pp. 3–6.

    Google Scholar 

  29. Oleinikov, B.V., Kopylova, A.G., Korobeinikova, A.F., and Kolpakova, N.A., Platinum and palladium in the metallic phase of terrestrial mafic rocks, Dokl. Akad. Nauk SSSR, 1999, vol. 364, no. 1, pp. 107–109.

    Google Scholar 

  30. Oleinikov, B.V., Tomshin, M.D., and Okrugin, A.V., Petrological features of pre-chamber magma evolution of platform mafic rocks, Izv. Akad. Nauk SSSR, Ser. Geol., 1980, no. 1, pp. 52–71.

  31. Pankov, V.Yu., Evolution of basaltic magma in reducing conditions, Samorodnoe metalloobrazovanie v magmaticheskom protsesse: Sb. nauchnykh trudov (Native Metal Formation in Magmatic Process. A Collection of Papers), Yakutsk: YaNTs SO RAN, 1991, pp. 48–61.

  32. Pedersen, A.K., Basaltic glass with high-temperature equilibrated immiscible sulphide bodies with native iron from Disko, central West Greenland, Contrib. Mineral. Petrol., 1979, vol. 69, no. 4, pp. 397–407.

    Article  Google Scholar 

  33. Persikov, E.S., Bukhtiyarov, P.G., Aranovich, L.Ya., et al., Experimental modeling of formation of native metals (Fe, Ni, Co) in the Earth’s crust by the interaction of hydrogen with basaltic melts, Geochem. Int., 2019, vol. 64, no. 10, pp. 1035–1044.

    Article  Google Scholar 

  34. Ramdohr, P., Neue beobachtugen am Buhleisen. sittr, Ber. Berliner Akad. Wiss., Math-nat. Kl., 1952, no. 5, pp. 9–24.

  35. Ryabov, V.V. and Anoshin, G.N., Iron–platinum mineralization in the intrusive traps of the Siberian Platform, Geol. Geofiz., 1999, vol. 40, no. 2, pp. 162–174.

    Google Scholar 

  36. Ryabov, V.V. and Lapkovskii, A.A., Unique polymineral association of Co–Ni and noble metal phases in gabbro-dolerite of the Dzhaltul Trap intrusion (Siberian Platform), Dokl. Earth Sci., 2010, vol. 434, no. 4, pp. 1325–1329.

    Article  Google Scholar 

  37. Ryabov, V.V. and Lapkovsky, A.A., Native iron (-platinum) ores from the Siberian Platform trap intrusions, Aust. J. Earth Sci, 2010, vol. 57, no. 6, pp. 707–736.

    Article  Google Scholar 

  38. Ryabov, V.V., Pavlov, A.L., and Lopatin, G.G., Samorodnoe zhelezo sibirskikh trappov (Native Iron of the Siberian Traps), Novosibirsk: Nauka, 1985.

  39. Samorodnoe metalloobrazovanie v platformennykh bazitakh (Native Metal Formation in Platform Basalts), Oleinikov, B.V., Okrugin, A.V., Tomshin, M.D., Eds., Yakutsk: YaNTs SB RAS, 1985.

  40. Shukolyukov, Yu.A., Verkhovskii, A.B., Drubetskoi, E.R., et al., Search for isotope features of mantle origin of native metals in trap rocks, Geokhimiya, 1981, no. 10, pp. 1442–1452.

  41. Sigunov, P.N., Khunktukunskaya differentiated nickel-bearing intrusion, Uch. Zap., NIIGA. Regional. Geol., 1969, vol. 16, pp. 53–61.

    Google Scholar 

  42. Staritskii, Yu.G., Native iron and copper of the Kureika River, Zap. Vsesoyuz. Mineral. O-va, 1965, vol. 94, no. 5, pp. 580–582.

    Google Scholar 

  43. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in Ocean Basins, Saunders, A.D. and Norry, M.J., Geol. Soc. London. Spec. Publ., 1989, no. 42, pp. 313–345.

  44. Tomshin M.D., Petrological Features of Anorthosite Differentiation Tendencies of Differentiation of Platform Mafic Rocks, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation (Tomsk, 1983).

  45. Tomshin, M.D., Salikhov, R.F., Matushkin, A.I., et al., Native iron in dolerites of the Aikhal sill (first find in Yalutia), Prirod. Resur. Arkt. Subarkt., 2019, vol. 24, no. 9, pp. 50–63.

    Google Scholar 

  46. Törnebohm, A.E., Ueber die Eisenführenden Gesteine von Ovifak und Assuk in Grønland, Bihang. Kongl. Svtnska Vet. Akad. Yandl, 1878, vol. 5, no. 10.

  47. Ulff-Møller, F., Native iron bearing intrusions of the Hammer Dal complex, north-west Disko, Rapp. Grønlands Geol. Unders., 1977, vol. 81, pp. 15–33.

    Google Scholar 

  48. Ulff-Møller, F., Formation of native iron in sediment-contaminated magma: I. A case study of the Hanekammen Complex on Disko Island, West Greenland, Geochim. Cosmochim. Acta, 1989, vol. 54, pp. 57–70.

    Article  Google Scholar 

  49. Vaasjoki, O., On basalt rocks with native iron in Disko, west Greenland, Bull. Commiss. Geol. Finlande, 1965, no. 218, pp. 85–97.

  50. Vegman, E.F., Zherebin, B.N., Pokhvisnev, A.N., and Yusfin, Yu.S., Proizvodstvo chernykh metallov i splavov (Production of Ferrous Metals and Alloys), Moscow: Akademkniga, 2004.

  51. Vilenskii, A.M., Petrologiya intruzivnykh trappov severa Sibirskoi platform (Petrology of Intrusive Traps of the Northern Siberian Platform), Moscow: Nauka, 1967.

  52. Zolotukhin, V.V. and Vasil’ev, Yu.R., Osobennosti mekhanizma formirovaniya nekotorykh trappovykh intruzii Sibirskoi platform (Mechanism of Formation of Some Trap Intrusions of the Siberian Platform), Moscow: Nauka, 1967.

Download references

ACKNOWLEDGMENTS

We are grateful to reviewers for valuable advices and comments, which allowed us to improve significantly the manuscript.

Funding

This work was made in the framework of the government-financed project of the IGABM SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. D. Tomshin or A. E. Vasilyeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Bogina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomshin, M.D., Kopylova, A.G. & Vasilyeva, A.E. Native Iron in Siberian Traps. Petrology 31, 223–236 (2023). https://doi.org/10.1134/S0869591123020054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123020054

Keywords:

Navigation