Skip to main content

Age, Composition, and Tectonic Setting of the Formation of Late Neoproterozoic (Late Baikalian) Complexes in the Kichera Zone, Baikal-Vitim Belt, Northern Baikal Area: Geological, Geochronological, and Nd Isotope Data

Abstract

The paper presents data on the geological structure of the Kichera zone of the Baikal–Vitim belt (BVB) at the boundary between the marginal part of the Siberian craton and the Barguzin–Vitim superterrane of the Central Asian Orogenic Belt. Early Neoproterozoic (Early Baikalian) and Late Neoproterozoic (Late Baikalian) structures and complexes are identified and characterized in the Kichera zone of the BVB. Data are presented on the geochemistry of the rocks and on their U–Pb isotope age (zircon, SIMS and ID-TIMS) and on the Nd isotope characteristics of rocks from various parts of the Kichera zone, including representative rock association of the Nyurundukan migmatite–tonalite–metabasite complex with MORB-type tholeiites and tholeiites with intraplate geochemical features. It is shown that the sources of the Early Neoproterozoic complexes of the Kichera zone, which were metamorphosed at 0.76–0.74 Ga as a result of accretion events in the marginal part of the craton, were dominated by Early Precambrian recycled crustal material. The Late Neoproterozoic complexes typomorphic of the Kichera zone were formed in the Cryogenian–Ediacaran (720–545 Ma) from prevailing juvenile sources. Our data suggest that the metabasites of the Nyurundukan complex were formed in an environment of segmented troughs of the pull-apart paleorift system of the Kichera zone and can be compared with a reduced complex of continental-margin ophiolites transformed at 630 ± 7 to 615 ± 3 Ma. The destruction of the ancient continental crust of the craton ended with the formation and exhumation of deep rocks in the Late Ediacaran, the emplacement of adakite granites of the postcollisional geochemical type, and the formation of grabens filled with a terrigenous complex. The juvenile and riftogenic crust produced during the Late Neoproterozoic tectonic evolution of the Kichera rift zone does not show any features of mature continental-type crust.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Notes

  1. Supplementary materials for the Russian and English on-line versions at https://elibrary.ru/ and http://link.springer.com/, respectively, present: ESM_1.pdf: Classification diagrams with the composition points of rocks from the Kichera zone; ESM_2.xlsx: Chemical compositions of rocks from the Kichera zone of BVB; ESM_3.xlsx: Data of U–Pb isotope studies of zircons (ID-TIMS); ESM_4.xlsx: Data of U–Pb isotope studies of zircons (SHRIMP-II); ESM_5.xlsx: Nd isotope data on rocks from the Kichera zone of BVB.

REFERENCES

  1. Amelin, Y.V., Neymark, L.A., Ritsk, E.Y., and Nemchin, A.A., Enriched Nd–Sr–Pb isotopic signatures in the Dovyren layered intrusion (eastern Siberia, Russia): evidence for source contamination by ancient upper-crustal material, Chem. Geol., 1996, vol. 129, pp. 39–69.

    Article  Google Scholar 

  2. Amelin, Y.V., Ritsk, EY., and Neymark, L.A., Effects of interaction between ultramafic tectonite and mafic magma on Nd–Pb–Sr isotopic systems in the Neoproterozoic Chaya massif, Baikal–Muya ophiolite belt, Earth Planet. Sci. Lett., 1997, vol. 148, pp. 299–316.

    Article  Google Scholar 

  3. Amelin, Yu.V., Rytsk, E.Yu., Krymsky, R.Sh., et al., Vendian age of enderbite from a granulite complex of the Baikal–Muya Ophiolite Belt, northern Baikal Region, Dokl. Earth Sci., 2000, vol. 371, no. 5, pp. 652–654.

    Google Scholar 

  4. Andreev, A.A., Rytsk, E.Yu., Velikoslavinskii, S.D., et al., Geodynamic settings of the formation of amphibolites of the Kichera Zone of the Baikal–Muya Foldbelt: results of geochemical studies, Dokl. Earth Sci., 2015, vol. 460, no. 2, pp. 168–173.

    Article  Google Scholar 

  5. Ariskin, A.A. Kostitsyn, Yu.A. Konnikov, E.G. Danyushevsky, L.V. Meffre, S. Nikolaev, G.S. McNeill, A. Kislov, E.V. and Orsoev, D.A., Geochronology of the Dovyren intrusive complex, northwestern Baikal Area, Russia, in the Neoproterozoic, Geochem. Int., 2013, vol. 51, no. 11, pp. 859–875.

    Article  Google Scholar 

  6. Black, L.P., Kamo, S.L., Allen, C.M., et al., Temora 1: a new zircon standard for Phanerozoic U-Pb geochronology, Chem. Geol., 2003, vol. 200, pp. 155–170.

    Article  Google Scholar 

  7. Bonev, N. and Stampfli, G.M., Gabbro, plagiogranite and associated dykes in the suprasubduction zone Evros Ophiolites, NE Greece, Geol. Mag., 2009, vol. 146, pp. 72–91.

    Article  Google Scholar 

  8. Borodenkov, A.G., Rile, G.V., and Rytsk, E.Yu., Geological-petrological aspects of relationships between regionally metamorphosed sequences of the northern Baikal region, Zakonomernosti metamagmatizma, metasomatoza i metamorfizma (Tendencies of Metamagmatism, Metasomatism, and Metamorphism), 1987, pp. 136–160.

  9. Bulgatov, A.N., Geodinamika Baikal’skoi gornoi oblasti v pozdnem rifee i vende-rannem paleozoe (Geodynamics of the Baikal mountainous system in the Late Riphean and Vendian–Early Paleozoic), Novosibirsk: GEO, 2015.

  10. Bulgatov, A.N., Gordienko, I.V., Zaitsev, P.F., et al., Geodinamicheskaya karta Baikal’skogo regiona i sopredel’nykh territorii (Geodynamic Map of the Baikal Region and Adjacent Territories) Ulan-Ude: GIN SO RAN, 2004.

  11. Castillo, P.R., Janney, P.E., and Solidum, R.U., Petrology and geochemistry of Camiguin Island, southern Phillippines: insights to the source of adakites and other lavas in a complex arc setting, Contrib. Mineral. Petrol., 1999, vol. 134, pp. 33–51.

    Article  Google Scholar 

  12. Dilek, Y. and Furnes, H., Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere, Geol. Soc. Am. Bull., 2011, vol. 123, pp. 387–411.

    Article  Google Scholar 

  13. Dobretsov, N.L., Ophiolites and Problems of the Baikal–Muya ophiolite belt, Magmatizm i metamorfizm zony BAM i ikh rol' v formirovanii poleznykh iskopaemykh (Magmatism and Metamorphism of the BAM Zone and their Role in the Formation of Mineral Resources), Novosibirsk: Nauka, 1983, pp. 11–19.

    Google Scholar 

  14. Dobretzov, N.L., Berzin, N.A., and Buslov, M.M., Opening and tectonic evolution of the paleo-Asian ocean, Int. Geol. Rev., 1995, vol. 37, pp. 335–360.

    Article  Google Scholar 

  15. Fedotova, A.A., Razumovskiy, A.A., Khain, E.V., et al., Late Neoproterozoic igneous complexes of the western Baikal–Muya Belt: formation stages, Geotectonics, 2014, vol. 48, no. 4, pp. 292–312.

    Article  Google Scholar 

  16. Goldstein, S.J. and Jacobsen, S.B., Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution, Earth Planet. Sci. Lett., 1988, vol. 87, pp. 249–265.

    Article  Google Scholar 

  17. Gordienko, I.V., The role of island-arc oceanic, collisional, and intraplate magmatism in the formation of continental crust in the Mongolia–Transbaikalia region: geostructural, geochronological, and Sm-Nd isotope data, Geodynamics & Tectonophyscs, 2021, vol. 12, pp. 1–47.

    Article  Google Scholar 

  18. Gordienko, I.V., Relationship between subduction-related and plume magmatism at the active boundaries of lithospheric plates in the interaction zone of the Siberian continent and Paleoasian ocean in the Neoproterozoic and Paleozoic, Geodynamics & Tectonophyscs, 2019, vol. 10, pp. 405–457.

    Article  Google Scholar 

  19. Grebennikov, A.V., A-type granites and related rocks: petrogenesis and classification, Russ. Geol. Geophys., 2014, vol. 55, no. 9, pp. 1074–1086.

    Article  Google Scholar 

  20. Gusev, G.S. and Khain, V.E., Relationships of the Baikal–Vitim, Aldan–Stanovoy, and Mongol–Okhotsk terranes (southern Middle Siberia), Geotektonika, 1995, no. 5, pp. 68–82.

  21. Gusev, G.S., Peskov, A.I., and Sokolov, S.K., Paleogeodynamics of the Muya segment of the Proterozoic Baikal–Vitim belt, Geotektonika, 1992, no. 2, pp. 72–86.

  22. Jacobsen, S.B. and Wasserburg, G.J., Sm-Nd evolution of chondrites and a chondrites, II, Earth Planet. Sci. Lett., 1984, vol. 67, pp. 137–150.

    Article  Google Scholar 

  23. Jensen, L.S., A New Cation Plot for Classifying Subalkalic Volcanic Rocks, Ontario: Div. Mines, 1976.

    Google Scholar 

  24. Kas’yanov, A.V., Conditions of formation of the Chaya mafic–ultramafic intrusion and related sulfide copper–nickel mineralization (northern Baikal region), Voprosy mineralogii, geokhimii i genezisa nikelevykh i platinovykh mestorozhdenii (Problems of Mineralogy, Geochemistry, and Genesis of Nickel and PGE Deposits), Moscow: TsNIGRI, 1973, Vol. 108, pp. 3–34.

    Google Scholar 

  25. Kazmin, V.G. and Byakov, A.F., Continental rifts: the structural control of magmatism and continental breakup, Geotectonics, 1997, vol. 31, no. 1, pp. 16–26.

    Google Scholar 

  26. Konnikov, E.G., Differentsirovannye giperbazit-bazitovye kompleksy dokembriya Zabaikal’ya (petrologiya i rudoobrazovanie) (Differentiated Precambrian Ultramafic–Mafic Complexes of the Transbaikalia: Petrology and Ore Formation), Novosibirsk: Nauka, 1986.

  27. Konnikov, E.G., Posokhov, V.F., and Vrublevskaya, T.T., Genesis of plagiomigmatites in the Precambrian ophiolites of the northern Baikal region, Russ. Geol. Geophys., 1994, vol. 35, no. 1, pp. 82–88.

    Google Scholar 

  28. Konnikov, E.G., Tsygankov, A.A., and Vrublevskaya, T.T., Baikalo-Muiskii vulkano-plutonicheskii poyas: strukturno-veshchestvennye kompleksy i geodinamika (Baikal–Muya Volcanoplutonic Belt: Lithotectonic Complexes and Geodynamics), Moscow: GEOS, 1999.

  29. Korikovsky, S.P., Evolution of zoned-metamorphic complexes at prograde and retrograde stages, Zakonomernosti metamagmatizma, metasomatizma i metamorfizma (Tendencies of Metamagmatism, Metasomatism, and Metamorphism), Moscow: Nauka, 1987, pp. 160–188.

    Google Scholar 

  30. Kotov, A.B., Rytsk, E.Yu., Andreev, A.A., et al., Sequence of the formation and age of Neoproterozoic magmatic complexes of the Kichery zone of the Baikal–Muya mobile belt, Tez. dokl. “Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa” (Proc. Conf. Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt), Irkutsk, 2013, vol. 11, pp. 129–130.

  31. Kovach V.P., Ping Jian, Yarmolyuk V.V., et al., et al., Magmatism and geodynamics of early stages of the Paleoasian ocean formation: geochronological and geochemical data on ophiolites of the Bayan–Khongor Zone, Dokl. Earth Sci., 2005, vol. 404, no. 2, pp. 1072–1077.

    Google Scholar 

  32. Kovach, V.P., Yarmolyuk, V.V., Kovalenko, V.I., et al., Composition, sources, and mechanisms of formation of the continental crust of the Lake Zone of the Central Asian Caledonides. II. Geochemical and Nd isotope data, Petrology, 2011, vol. 19, no. 4, pp. 399–425.

    Article  Google Scholar 

  33. Kovach, V.P., Rytsk, E.Yu., Velikoslavinsky, S.D., et al., Age of detrital zircons and sources of terrigenous deposits of the Olokit Zone (Northern Baikal Region), Dokl. Earth Sci., 2020, vol. 493, no. 2, pp. 600–603.

    Article  Google Scholar 

  34. Krogh, T.E., A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta, 1973, vol. 37, pp. 485–494.

    Article  Google Scholar 

  35. Kröner, A., Fedotova, A.A., Khain, E.V., et al., Neoproterozoic ophiolite and related high-grade rocks of the Baikal–Muya belt, Siberia: geochronology and geodynamic implications, J. Asian Earth Sci., 2015, vol. 111, pp. 138–160.

  36. Kushev, V.G., Evolution of the Baikal mountainous system in the Late Proterozoic–Cambrian, Geol. Geofiz., 1977, no. 9, pp. 23–37.

  37. Kuzmichev, A.B. and Larionov, A.N., The Sarkhoi Group in East Sayan: Neoproterozoic (~ 770–800 Ma) volcanic belt of the Andean type, Russ. Geol. Geophys., 2011, vol. 52, no. 7, pp. 685–700.

    Article  Google Scholar 

  38. Kuzmin, M.I. and Yarmolyuk, V.V., Plate tectonics and mantle plumes as a basis of deep-seated Earth’s tectonic activity for the last 2 Ga, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 11–30.

    Google Scholar 

  39. Lebedeva, Yu.M., Rytsk, E.Yu., Andreev, A.A., et al., Formation conditions of basic granulites and high-alumina gneiss of the Baikal–Muya Belt (northern Baikal Area), Dokl. Earth Sci., 2018, vol. 479, no. 1, pp. 342–346.

    Article  Google Scholar 

  40. Lesnov, F.P., Geologiya i petrologiya Chaiskogo gabbro-peridotit-dunitovogo nikelenosnogo plutona v Severnom Pribaikal’e (Geology and Petrology of the Nickel-Bearing Chaya gabbro–Peridotite–Dunite Pluton in the Northern Baikal Region), Novosibirsk: Nauka, 1972.

  41. Lesnov, F.P., Isotope age of zircons from ultramafic rocks of the Shaman massif (Eastern Transbaikali), Materialy VII Rossiiskoi konferentsii “Metody i geologicheskie rezul’taty izucheniya izotopno-geokhronologicheskikh sistem mineralov i porod” (Proc. 7th Russian Conference “Methods of Isotope-Geochronological Study of Minerals and Rocks”), Moscow, 2018, pp. 191–193.

  42. Ludwig, K.R., PbDat for MS-DOS, Version 1.21, U.S. Geol. Survey Open-File Rept, 1991, no. 88-542.

  43. Ludwig, K.R., ISOPLOT/Ex. Version 2.06. A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronol. Center, Sp. Publ., 1999, no. 1a.

  44. Ludwig, K.R., Squid: 1.13. A User Manual. A Geochronological Toolkit for MS Excel, Berkeley Geochronol. Center Spec. Publ., 2001.

    Google Scholar 

  45. Ludwig, K.R., Isoplot 3.74b. A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., 2007.

    Google Scholar 

  46. Ludwig, K.R., Squid 2: a user’s manual, Berkeley Geochronol. Center Spec. Publ., 2009, no. 5.

  47. Makrygina, V.A., Konev, A.A., and Piskunova, L.F., On granulites in the Nyurunda series of the northern Baikal region, Dokl. Akad. Nauk SSSR, 1989, vol. 307, no. 1, pp. 195–201.

    Google Scholar 

  48. Makrygina, V.A., Konnikov, E.G., Neimark, L.A., et al., On the age of the granulite–charnockite complex in the Nyurundukan Formation of the Northern Baikal region: geochronological paradox, Dokl. Akad. Nauk, 1993, vol. 332, no. 4, pp. 486–489.

    Google Scholar 

  49. Mattinson, J.M., A study of complex discordance in zircons using step-wise dissolution techniques, Contrib. Mineral. Petrol., 1994, vol. 116, pp. 117–129.

    Article  Google Scholar 

  50. Mitrofanova, N.N., Boldyrev, V.I., Korobeinikov, N.K., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1000000 (tret’e pokolenie). Seriya Aldano-Zabaikal’skaya. List O-49-Kirensk. Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1 : 1000000 (Third Generation). Aldan–Transbaikalia Series. Sheet O-49-Kirensk. Explanatory Note)), St. Petersburg: Kartfabrika VSEGEI, 2010.

  51. Neimark, L.A., Rytsk, E.Yu., Gorokhovskii, B.M., et al., Lead isotope composition and genesis of Pb–Zn mineralization of the Olokit Zone, Nortehrn Baikal region, Geol. Rudn. Mestorozhd., 1991, no. 6, pp. 34–49.

  52. Neimark, L.A., Rytsk, E.Yu., Gorokhovskii, B.M., et al., On the age of the “Muya” granites of the Baikal–Vitim ophiolite belt, Dokl. Akad. Nauk, 1995, vol. 343, no. 5, pp. 673–675.

    Google Scholar 

  53. Parfenov, L.M., Berzin, N.A., Khanchuk, A.I., et al., Model of the formation of orogenic belts of the Central and Northeastern Asia, Tikhookean. Geol., 2003, vol. 22, no. 6, pp. 7–41.

    Google Scholar 

  54. Pedersen, R. and Malpas, J., The origin of oceanic plagiogranites from the Karmoy ophiolite, western Norway, Contrib. Mineral. Petrol., 1984, vol. 88, pp. 36–52.

    Article  Google Scholar 

  55. Perchuk, L.L., Geothermobarometry and displacement of the crystalline rocks and upper mantle, Sorovsk. Obrazovat. Zh., 1997, no. 7, pp. 64–72.

  56. Perelyaev, V.I., Ul’tramafic–Mafic Complexes of the Western Middle Vitim Mountainous System, Extended Abstract of Candidate’s (Geol.-Min) Dissertation, Irkutsk: IZK SO RAN, 2003.

  57. Rytsk, E.Yu., Tectonic zoning of the Baikal fold system and stages of its formation, Fundamental’nye problemy tektoniki i geodinamiki. Materialy LII Tektonicheskogo soveshchaniya (Fundamental Problems of Tectonics and Geodynamics. Proc. LII Tectonic Conference), Moscow: GEOS, 2020, vol. 2, pp. 256–259.

  58. Rytsk, E.Yu., Belyatsky, B.V., and Shalaev, V.S., On the age of metamorphism and subcontinental origin of ultramafic rocks of the Param massif (Baikal–Muya Belt), Izotopnoe datirovanie geologicheskikh protsessov: novye metody i rezul’taty. Tez. dokl. I Rossiiskoi konferentsii po izotopnoi geokhronologii (Isotope Dating of Geological Processes: New Methods and Results. Proc. Conf. Isotope Geochronology), Moscow: GEOS, 2000, pp. 313–315.

  59. Rytsk, E.Yu., Amelin, Yu.V., Rizvanova, N.G., et al., Age of rocks in the Baikal–Muya Foldbelt, Stratigraphy. Geol. Correlation, 2001, vol. 9, no. 4, pp. 315–326.

    Google Scholar 

  60. Rytsk, E.Yu., Shalaev, V.S., Rizvanova, N.G., et al., The Olokit zone of the Baikal fold region: new isotope-geochronological and petrogeochemical data, Geotectonics, 2002, vol. 36, no. 1, pp. 24–35.

    Google Scholar 

  61. Rytsk, E.Yu., Kovach, V.P., Yarmolyuk, V.V., and Kovalenko, V.I., Structure and evolution of the continental crust in the Baikal fold region, Geotectonics, 2007, vol. 41, no. 6, pp. 440–464.

    Article  Google Scholar 

  62. Rytsk, E.Yu., Kovach, V.P., Yarmolyuk, V.V., et al., Isotopic structure and evolution of the continental crust in the East Transbaikalian segment of the Central Asian Foldbelt, Geotectonics, 2011, vol. 45, no. 5, pp. 349–377.

    Article  Google Scholar 

  63. Rytsk, E.Yu., Kotov, A.B., Andreev, A.A., et al., The structure and age of the Baikal granitoid massif: new evidence for Early Baikalian events in the Baikal–Muya mobile belt, Dokl. Earth Sci., 2013a, vol. 453, no. 2, pp. 1205–1208.

    Article  Google Scholar 

  64. Rytsk, E.Yu., Velikoslavinskii, S.D., Kovach, V.P., et al., Anamakit–Muya terrane of Early Baikalides: isotope-geochemical evidence for Neoproterozoic active continental margin, Tez. dokl. “Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa” (Proc. Geodynamic Evolution of Lithosphere of the Central-Asian Mobile Belt), Irkutsk, 2013b, vol. 11, pp. 196–197.

    Google Scholar 

  65. Rytsk, E.Yu., Velikoslavinskii, S.D., Bogomolov, E.S., et al., Riftogenic setting of the formation of ultramafic–mafic complexes of the Northern Baikal region: new geological, geochemical, and isotope data, Tez. dokl. “Ul’tramafit-mafitovye kompleksy: geologiya, stroenie, rudnyi potentsial”. Materialy V Mezhdunarodnoi konferentsii (Proc. Ultramafic–Mafic Complexes: Geology, Structure, and Ore Potential. Proc. 5th International Conference), Ulan-Ude, 2017, pp. 239–241.

  66. Rytsk, E.Yu., Velikoslavinskii, S.D., Alekseev, I.A., et al., Geology of the Karalon gold ore field in the Mid-Vitim Highlands, Geol. Ore Deposits, 2018a, vol. 60, no. 4, pp. 277–299.

    Article  Google Scholar 

  67. Rytsk, E.Yu., Tolmacheva, E.V., Velikoslavinskii, S.D., et al., Major stages in the tectonomagmatic evolution of the Baikal–Muya belt in the Nortehrn Baikal region: new geochronological data, Materialy VII Rossiiskoi konferentsii po izotopnoi geokhronologii (Proc. 7th Russian Conference on Isotope Geochronology), Moscow, 2018b, pp. 297–300.

  68. Rytsk, E.Yu., Kotov, A.B., Sal’nikova, E.B., et al., Gneiss-granites of the “Mam–Oron” complex in the Northern Baikal region: geological position and age (U-Pb zircon, TIMS), Materialy VII Rossiiskoi konferentsii po izotopnoi geokhronologii (Proc. 7th Russian Conference on Isotope Geochronology), Moscow, 2018c, pp. 300–302.

  69. Rytsk, E.Yu., Sal’nikova, E.B., Yarmolyuk, V.V., et al., The Early Cambrian age and crustal sources of granitoids of the Goryachinskiy Pluton (Northern Baikal): geodynamic implications, Dokl. Earth Sci., 2019, vol. 484, no. 4, pp. 163–166.

    Article  Google Scholar 

  70. Salop, L.I., Geologiya Baikal’skoi gornoi oblasti (Geology of the Baikal Mountainous System), Moscow: Nedra, 1964, vol. 1.

  71. Sharpenok, L.N., Kostin, A.E., and Kukharenko, E.A. TAS-diagram total alkali–silica for the chemical classification and diagnostics of plutonic rocks, Regional. Geol. Metallogen., 2013, vol. 56, pp. 40–50.

    Google Scholar 

  72. Shatsky, V.S., Sitnikova, E.S., Tomilenko, A.A., et al., Eclogite–gneiss complex of the Muya block (East Siberia): age, mineralogy, geochemistry, and petrology, Russ. Geol. Geophys., 2012, vol. 53, no. 6, pp. 501–521.

    Article  Google Scholar 

  73. Shatsky, V.S., Skuzovatov, S.Yu., Ragozin, A.L., and Dril, S.I., Evidence of Neoproterosoic continental subduction in the Baikal–Muya Fold Belt, Dokl. Earth Sci., 2014, vol. 459, no. 1, pp. 1442–1445.

    Article  Google Scholar 

  74. Skublov, S.G., Nyurundukan Mafic Complex of the Northwestern Baikal Region: Composition, Structure, and Petrogenesis, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, St. Petersburg: IGGD RAN, 1994.

  75. Skuzovatov, S.Yu., Kuo-Lung, Wang., Shatsky, V.S., and Buslov, M.M., Geochemistry, zircon P-Pb age and Hf isotopes of the North Muya block granitoids (Central Asian Orogenic Belt): constraints on petrogenesis and geodynamic significance of felsic magmatism, Precambrian Res., 2016, vol. 280, pp. 14–30.

    Article  Google Scholar 

  76. Skuzovatov, S.Yu., Shatsky, V.S., and Kuo-Lung, Wang., Continental subduction during arc-microcontinent collision in the southern Siberian Craton: constraints on protoliths and metamorphic evolution of the North Muya complex eclogites (Eastern Siberia), Lithos, 2019a, vol. 342–343, pp. 76–96.

    Article  Google Scholar 

  77. Skuzovatov, S.Yu., Kuo-Lung, Wang., Dril, S., et al., Geochemistry, zircon U-Pb and Lu-Hf systematics of high-grade metasedimentary sequences from the South Muya block (northeastern Central Asian Orogenic Belt): reconnaissance of polymetamorphism and accretion of Neoproterozoic exotic blocks in southern Siberia, Precambrian Res., 2019b, vol. 321, pp. 34–53.

    Article  Google Scholar 

  78. Stacey, J.S. and Kramers, I.D., Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol. 26, no. 2, pp. 207–221.

    Article  Google Scholar 

  79. Steiger, R.H. and Jager, E., Subcomission of geochronology: convention of the use of decay constants in geo- and cosmochronology, Earth Planet. Sci. Lett., 1976, vol. 36, no. 2, pp. 359–362.

    Article  Google Scholar 

  80. Sun, S.S. and McDonough, W.F., Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes, Geol. Soc. London: Spec. Publ., 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  81. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Oxford: Blackwell Sci. Publ., 1985.

    Google Scholar 

  82. Tsygankov, A.A., Magmaticheskaya evolyutsiya Baikalo-Muiskogo vulkanoplutonicheskogo poyasa v pozdnem dokembrii (Magmatic evolution of the Baikal–Muya Volcanoplutonic Belt in the Late Precambrian), Novosibirsk: Izd-vo SO RAN, 2005.

  83. Tsygankov, A.A., Vrublevskaya, T.T., and Posokhov, V.F., Geochronology and genesis of hypersthene-bearing gneissic alaskite granites of the northern Baikal Region, Geochem. Int., 2000, vol. 38, no. 6, pp. 542–551.

    Google Scholar 

  84. Velikoslavinskii, S.D., Geochemical classification of silicic igneous rocks of major geodynamic environments, Petrology, 2003, vol. 11, no. 4, pp. 327–342.

    Google Scholar 

  85. Velikoslavinskii, S.D. and Krylov, D.P., Geodynamic classification of intermediate magmatic rocks based on geochemical data, Petrology, 2015, vol. 23, no. 5, pp. 413–420.

    Article  Google Scholar 

  86. Velikoslavinskii, S.D., Kotov, A.B., Krylov, D.P., and Larin, A.M., Determining the geodynamic setting of adakitic granitoids using geochemical data, Petrology, 2018, vol. 26, no. 3, pp. 255–264.

    Article  Google Scholar 

  87. Vrublevskaya, T.T. and Tsygankov, A.A., Petrotypes of the Muya Granitoids (Baikal Mountainous System), Geol. Geofiz., 1997, vol. 38, no. 9, pp. 1454-1489.

    Google Scholar 

  88. Vrublevskaya, T.T., Tsygankov, A.A., and Orsoev, D.A., Contact processes in the Nyurundukan ultramafic–mafic massif (northern Baikal region), Russ. Geol. Geophys., 2003, vol. 44, no. 3, pp. 205–223.

    Google Scholar 

  89. Whattam, S., Gazel, E., and Denyer, P., Origin of plagiogranites in oceanic complexes: a case study of the Nicoya and Santa Elena terranes, Costa Rica, Lithos, 2016, vol. 262, pp. 75–87.

    Article  Google Scholar 

  90. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  91. Williams, I.S., U-Th-Pb geochronology by ion microprobe, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Article  Google Scholar 

  92. Yarmolyuk, V.V. and Degtyarev, K.E., Precambrian terranes of the Central Asian Orogenic Belt: comparative characteristics, types, and peculiarities of tectonic evolution, Geotectonics, 2019, vol. 53, no. 1, pp. 1–23.

    Article  Google Scholar 

  93. Yarmolyuk, V.V., Kovach, V.P., Kovalenko, V.I., et al., Composition, sources, and mechanism of continental crust growth in the Lake Zone of the Central Asian Caledonides: I. Geological and geochronological data, Petrology, 2011, vol. 19, no. 1, pp. 55–78.

    Article  Google Scholar 

  94. Yarmolyuk, V.V., Kovach, V.P., Kozakov, I.K., et al., Mechanisms of continental crust formation in the Central Asian Foldbelt, Geotectonics, 2012, vol. 46, no. 4, pp. 251–272.

    Article  Google Scholar 

  95. Yarmolyuk, V.V., Lebedev, V.I., and Kozlovsky, A.M., Neoproterozoic magmatic complexes of the Songino Block (Mongolia): a problem of formation and correlation of Precambrian Terranes in the Central-Asian Orogenic Belt, Petrology, 2017, vol. 25, no. 4, pp. 365–395.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank A.N. Larionov, E.N. Lepekhina, and N.V. Rodionov for conducting the SHRIMP II analytical and U−Pb−Th studies. G.P. Pleskach is thanked for preparing the graphical material, and N.P. Pugacheva is thanked for assisting in preparing the samples for analysis and for zircon separation. We highly appreciate discussions of the manuscript with V.P. Kovach, E.V. Khain, and V.M. Savatenkov at various stages of its preparation. We thank A.B. Kotov, E.B. Sal’nikova, Yu.V. Plotkina, and M.P. Pavlov for carrying out the U−Pb (ID-TIMS) geochronologic study. We indebted to V.V. Yarmolyuk for constructive criticism of the manuscript and thank the reviewers E.V. Sklyarov and A.A. Tsygankov for valuable comments that led us to improve the content of the manuscript.

Funding

This study was carried out under government-financed research projects for the Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Scciences, and the Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences (project nos. (FMMN-2021-0006, FMUW-2022-0003, FMUW-2022-0004). The U−Pb (ID-TIMS) geochronologic study and part of the geochemical research were carried out under Project 19-17-00205 of the Russian Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Andreev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andreev, A.A., Rytsk, E.Y., Velikoslavinskii, S.D. et al. Age, Composition, and Tectonic Setting of the Formation of Late Neoproterozoic (Late Baikalian) Complexes in the Kichera Zone, Baikal-Vitim Belt, Northern Baikal Area: Geological, Geochronological, and Nd Isotope Data. Petrology 30, 337–368 (2022). https://doi.org/10.1134/S0869591122040026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122040026

Keywords:

  • Baikal–Vitim belt
  • Kichera zone
  • Early and Late Neoproterozoic complexes
  • pull-apart paleorift structures
  • juvenile crust