Acosta-Vigil, A., London, D., and Morgan, G.B., Experiments on the kinetics of partial melting of a leucogranite at 200 MPa H2O and 690–800°C: compositional variability of melts during the onset of H2O-saturated crustal anatexis, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 539–551.
Article
Google Scholar
Anovitz, L.M. and Essene, E.J., Phase equilibria in the system CaCO3–MgCO3–FeCO3, J. Petrol., 1987, vol. 28, pp. 389–415.
Article
Google Scholar
Aranovich, L.Y. and Newton, R.C., H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium, Contrib. Mineral. Petrol., 1996, vol. 125, pp. 200–212.
Article
Google Scholar
Aranovich, L.Y. and Safonov, O.G., Halogens in high-grade metamorphism, The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes, Cham: Springer, 2018.
Google Scholar
Bartoli, O. and Cesare, B., Nanorocks: a 10-year-old story, Rendiconti Lincei. Scienze Fisiche e Naturali, 2020, vol. 31, pp. 249–257.
Article
Google Scholar
Boettcher, A.L., Robertson, J.K., and Wyllie, P.J., Studies in synthetic carbonatite systems: solidus relationships for CaO–MgO–CO2–H2O to 40 kbar and CaO–MgO–SiO2–CO2–H2O to 10 kbar, J. Geophys. Res. Solid Earth, 1980, vol. 85, pp. 6937–6943.
Article
Google Scholar
Bohlen, S.R. and Liotta, J.J., A barometer for garnet amphibolites and garnet granulites, J. Petrol., 1986, vol. 27, pp. 1025–1034.
Article
Google Scholar
Bohlen, S.R., Wall, V.J., and Boettcher, A.L., Geobarometry in granulites, Kinetics and Equilibrium in Mineral Reactions, New York: Springer, 1983, pp. 141–171.
Google Scholar
Bohlender, F., van Reenen, D.D., and Barton, Jr.J.M., Evidence for metamorphic and igneous charnockites in the southern marginal zone of the Limpopo Belt, Precambrian Res., 1992, vol. 55, pp. 429–449.
Article
Google Scholar
Bolder-Schrijver, L.J.A., Kriegsmann, L.M., and Touret, J.L.R., Primary carbonate/CO2 inclusions in sapphirine-bearing granulites from Central Sri-Lanka, J. Metamorph. Geol., 2000, vol. 18, pp. 259–269.
Article
Google Scholar
Le Breton, N. and Thompson, A.B., Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anataxis, Contrib. Mineral. Petrol., 1988, vol. 99, pp. 226–237.
Article
Google Scholar
Brown, M., Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences, J. Geol. Soc., 2007, vol. 164, pp. 709–730.
Article
Google Scholar
Brown, M., Granite: from genesis to emplacement, GSA Bull, 2013, vol. 1079-1113.
Google Scholar
Carvalho, B.B., Bartoli, O., Cesare, B., et al., Primary CO2-bearing fluid inclusions in granulitic garnet usually do not survive, Earth Planet. Sci. Lett., 2020, vol. 536, p. 116170.
Article
Google Scholar
Cesare, B., Acosta-Vigil, A., Bartoli, O., et al., What can we learn from melt inclusions in migmatites and granulites?, Lithos, 2015, vol. 239, pp. 186–216.
Article
Google Scholar
Chappell, B.W. and White, A.J.R., Two contrasting granite types: 25 years later, Austral. J. Earth Sci, 2001, vol. 48, pp. 489–499.
Article
Google Scholar
Chappell, B.W., Bryant, C.J., and Wyborn, D., Peraluminous I-type granites, Lithos, 2012, vol. 153, pp. 142–153.
Article
Google Scholar
Clemens, J.D., The granulite–granite connexion, Granulites and Crustal Differentiation, Vielzeuf, D. and Vidal, P., Eds., Dordrecht: Kluwer Academic Publishers, 1990.
Google Scholar
Clemens, J.D., Partial melting and granulite genesis: a partisan overview, Precambrian Res., 1992, vol. 55, pp. 297–301.
Article
Google Scholar
Clemens, J.D., Experimental evidence against CO2-promoted deep crustal melting, Nature, 1993, vol. 363, pp. 336–338.
Article
Google Scholar
Clemens, J.D., Droop, G.T., and Stevens, G., High-grade metamorphism, dehydration and crustal melting: a reinvestigation based on new experiments in the silica-saturated portion of the system KAlO2–MgO–SiO2–H2O–CO2 at P ≤ 1.5 GPa, Contrib. Mineral. Petrol., 1997, vol. 129, pp. 308–325.
Article
Google Scholar
Connolly, J.A.D., Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation, Earth Planet. Sci. Lett., 2005, vol. 236, pp. 524–541.
Article
Google Scholar
Duke, E.F. and Rumble, D., Textural and isotopic variations in graphite from plutonic rocks, south-central New Hampshire, Contrib. Mineral. Petrol., 1986, vol. 93, pp. 409–419.
Article
Google Scholar
Duncan, M.S. and Dasgupta, R., Co2 solubility and speciation in rhyolitic sediment partial melts at 1.5–3.0 GPa - implications for carbon flux in subduction zones, Geochim. Cosmochim. Acta, 2014, vol. 124, pp. 328–347.
Article
Google Scholar
Ebadi, A. and Johannes, W., Beginning of melting and composition of first melts in the system Qz–Ab–Or–H2O–CO2, Contrib. Mineral. Petrol., 1991, vol. 106, pp. 286–295.
Article
Google Scholar
Elkins, L.T. and Grove, T.L., Ternary feldspar experiments and thermodynamic models, Am. Mineral., 1990, vol. 75, pp. 544–559.
Google Scholar
Farquhar, J. and Chacko, T., Isotopic evidence for involvement of CO2-bearing magmas in granulite formation, Nature, 1991, vol. 354, pp. 60–63.
Article
Google Scholar
Ferrero, S., Wunder, B., Ziemann, M.A., et al., Carbonatitic and granitic melts produced under conditions of primary immiscibility during anatexis in the lower crust, Earth Planet. Sci. Lett., 2016, vol. 454, pp. 121–131.
Article
Google Scholar
Le Fort, P., Cuney, M., Deniel, C., et al., Crustal generation of the Himalayan leucogranites, Tectonophysics, 1987, vol. 134, pp. 39–57.
Article
Google Scholar
Frezzotti, M.-L., Di Vincenzo, G., Ghezzo, C., et al., Evidence of magmatic CO2-rich fluids in peraluminous graphite-bearing leucogranites from Deep Freeze Range (northern Victoria Land, Antarctica), Contrib. Mineral. Petrol., 1994, vol. 117, pp. 111–123.
Article
Google Scholar
Frost, B.R. and Frost, C.D., CO2, melts and granulite metamorphism, Nature, 1987, vol. 327, pp. 503–506.
Article
Google Scholar
Frost, B.R., Frost, C.D., and Touret, J.L., Magmas as a source of heat and fluids in granulite metamorphism, Fluid Movements–-Element transport and the composition of the Deep Crust, Netherlands: Springer, 1989.
Google Scholar
Frost, B.R., Frost, C.D., Hulsebosch, T.P., et al., Origin of the charnockites of the Louis Lake Batholith, Wind River Range, Wyoming, J. Petrol., 2000, vol. 41, pp. 1759–1776.
Article
Google Scholar
Frost, B.R., Barnes, C.G., Collins, W.J., et al., A geochemical classification for granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.
Article
Google Scholar
Gao, P., Zheng, Y.F., and Zhao, Z.F., Experimental melts from crustal rocks: a lithochemical constraint on granite petrogenesis, Lithos, 2016, vol. 266, pp. 133–157.
Article
Google Scholar
Gardien, V., Thompson, A.B., Grujic, D., et al., Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting, J. Geophys. Res. Solid Earth, 1995, vol. 100, B8, pp. 15581–15591.
Article
Google Scholar
Gardien, V., Thompson, A.B., and Ulmer, P., Melting of biotite + plagioclase + quartz gneisses: the role of H2O in the stability of amphibole, J. Petrol., 2000, vol. 41, pp. 651–666.
Article
Google Scholar
Glassley, W.E., Deep crustal carbonates as CO2 fluid sources: evidence from metasomatic reaction zones, Contrib. Mineral. Petrol., 1983, vol. 84, pp. 15–24.
Article
Google Scholar
Grant, J.A., 1986. quartz-phlogopite-liquid equilibria and origins of charnockites, Am. Mineral., 1986, vol. 71, pp. 1071–1075.
Google Scholar
Grassi, D. and Schmidt, M.W., The melting of carbonated pelites from 70 to 700 km depth, J. Petrol., 2011, vol. 52, pp. 765–789.
Article
Google Scholar
Groppo, C., Rapa, G., Frezzotti, M.L., et al., The fate of calcareous pelites in collisional orogens, J. Metamorph. Geol., 2021, vol. 39, pp. 181–207.
Article
Google Scholar
Hamilton, D.L., Mackenzie W.S. phase equilibrium studies in the system NaAlSiO4 (nepheline)–KAlSiO4 (kalsilite)–SiO2–H2O, Mineral. Mag., 1965, vol. 34, pp. 214–231.
Google Scholar
Hammouda, T. and Keshav, S., Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites, Chem. Geol., 2015, vol. 418, pp. 171–188.
Article
Google Scholar
Harley, S.L. and Santosh, M., Wollastonite at nuliyam, kerala, southern india: a reassessment of CO2-infiltration and charnockite formation at a classic locality, Contrib. Mineral. Petrol., 1995, vol. 120, pp. 83–94.
Article
Google Scholar
Henry, D.J., Guidotti, C.V., and Thomson, J.A., The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms, Am. Mineral., 2005, vol. 90, pp. 316–328.
Article
Google Scholar
Herms, P. and Schenk, V., Fluid inclusions in granulite-facies metapelites of the Hercynian ancient lower crust of the Serre, Calabria, Southern Italy, Contrib. Mineral. Petrol., 1992, vol. 112, pp. 393–404.
Article
Google Scholar
Herms, P. and Schenk, V., Fluid inclusions in high-pressure granulites of the Pan-African belt in Tanzania (Uluguru Mts): a record of prograde to retrograde fluid evolution, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 199–212.
Article
Google Scholar
Holland, T.J., The reaction albite = jadeite + quartz determined experimentally in the range 600-1200oC, Am. Mineral., 1980, vol. 65, pp. 129–134.
Google Scholar
Holland, T. and Powell, R., Thermodynamics of order–disorder in minerals; i. symmetric formalism applied to minerals of fixed composition, Am. Mineral., 1996, vol. 81, pp. 1413–1424.
Article
Google Scholar
Holloway, J.R., Fluids in evolution of granitic magmas: consequence of finite CO2 solubility, GSA Bull., 1976, vol. 87, pp. 1513–1518.
Article
Google Scholar
Huizenga, J.M. and Touret, J.L., Granulites, CO2 and graphite, Gondwana Res., 2012, vol. 22, pp. 799–809.
Article
Google Scholar
Johnson, T.E., White, R.W., and Powell, R., Partial melting of metagreywacke: a calculated mineral equilibria study, J. Metamorph. Geol., 2008, vol. 26, pp. 837–853.
Article
Google Scholar
Kerrick, D.M. and Caldeira, K., Metamorphic CO2 degassing from orogenic belts, Chem. Geol., 1998, vol. 145, pp. 213–232.
Article
Google Scholar
Konnerup-Madsen, J., Composition and microthermometry of fluid inclusions in the Kleivan granite, south Norway, Am. J. Sci., 1977, vol. 277, pp. 673–696.
Article
Google Scholar
Konnerup-Madsen, J., Fluid inclusions in quartz from deep-seated granitic intrusions, south Norway, Lithos, 1979, vol. 12, pp. 13–23.
Article
Google Scholar
Lamadrid, H.M., Lamb, W.M., Santosh, M., et al., Raman spectroscopic characterization of H2O in CO2-rich fluid inclusions in granulite facies metamorphic rocks, Gondwana Res., 2014, vol. 26, pp. 301–310.
Article
Google Scholar
Lamb, W., Carbonates in feldspathic gneisses from the granulite facies: implications for the formation of CO2-rich fluid inclusions, Metamorphic and Crustal Evolution: Papers in Honour of Prof. R.S. Sharma, Ed. Thomas, H., New Delhi: Atlantic, 2005, pp. 163–181.
Lowenstern, J.B., Carbon dioxide in magmas and implications for hydrothermal systems, Miner. Deposita, 2001, vol. 36, pp. 490–502.
Article
Google Scholar
Mann, U. and Schmidt, M.W., Melting of pelitic sediments at subarc depths: 1. Flux vs. fluid-absent melting and a parameterization of melt productivity, Chem. Geol., 2015, vol. 404, pp. 150–167.
Article
Google Scholar
McCourt, S. and van Reenen, D.D., Structural geology and tectonic setting of the Sutherland greenstone belt, Kaapvaal Craton, South Africa, Precambrian Res., 1992, vol. 55, pp. 93–110.
Article
Google Scholar
Mityaev A.S., Safonov O.G., Reutsky, V.N., et al., Isotope Characteristics of carbonates from rocks of greenstone belts as an indicator of a possible source of fluids in Precambrian granulite complexes: an example from the Giyani Greenstone Belt and the Limpopo Granulite Complex, South Africa, Dokl. Earth Sci., 2020, vol. 492, pp. 342–345.
Article
Google Scholar
Montel, J.M. and Vielzeuf, D., Partial melting of metagreywackes, Part II. Compositions of minerals and melts, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 176–196.
Article
Google Scholar
Moyen, J. and Stevens, G., Experimental constraints on TTG petrogenesis: implications for Archean geodynamics, Geophys. Monogr. Ser., 2006, vol. 164, p. 149.
Google Scholar
Moyen, J. and Martin, H., Forty years of TTG research, Lithos, 2012, vol. 148, pp. 312–336.
Article
Google Scholar
Nair, R. and Chacko, T., Fluid-absent melting of high-grade semi-pelites: P-T constraints on orthopyroxene formation and implications for granulite genesis, J. Petrol., 2002, vol. 43, pp. 2121–2142.
Article
Google Scholar
Newton, R.C., Smith, J.V., and Windley, B.F., Carbonic metamorphism, granulites and crustal growth, Nature, 1980, vol. 288, pp. 45–50.
Article
Google Scholar
Ni, H. and Keppler, H., Carbon in silicate melts, Rev. Mineral. Geochem., 2013, vol. 75, pp. 251–287.
Article
Google Scholar
Papale, P., Moretti, R., and Barbato, D., The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts, Chem. Geol., 2006, vol. 229, pp. 78–95.
Article
Google Scholar
Patiño Douce, A.E., Effects of pressure and H2O content on the compositions of primary crustal melts, Trans. R. Soc. Edinb.: Earth Sci., 1996, vol. 87, pp. 11–21.
Google Scholar
Patiño Douce, A.E. and Johnston, A.D., Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 202–218.
Article
Google Scholar
Patiño Douce, A.E. and Beard, J.S., Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar, J. Petrol., 1995, vol. 36, pp. 707–738.
Article
Google Scholar
Patiño Douce, A.E. and Beard, J.S., Effects of P, fO2 and Mg/Fe ratio on dehydration melting of model metagreywackes, J. Petrol., 1996, vol. 37, pp. 999–1024.
Article
Google Scholar
Perchuk, L.L. and Gerya, T.V., Formation and evolution of Precambrian granulite terranes: a gravitational redistribution model, Origin and Evolution of Precambrian High-Grade Gneiss Terranes, with Special Emphasis on the Limpopo Complex of Southern Africa, van Reenen, D.D., Kramers, J.D., McCourt, S., Perchuk, L.L., Eds. Geol. Soc. Amer. Mem., 2011, vol. 207, pp. 1–22.
Google Scholar
Perchuk, L.L., Gerya, T.V., van Reenen, D.D., et al., The Limpopo metamorphic belt, South Africa: 2. Decompression and cooling regimes of granulites and adjacent rocks of the Kaapvaal Craton, Petrology, 1996, vol. 4, no. 6, pp. 571–599.
Google Scholar
Perchuk, L.L., Gerya, T.V., van Reenen, D.D., et al., P-t paths and tectonic evolution of shear zones separating high-grade terrains from cratons: examples from Kola Peninsula (Russia) and Limpopo region (South Africa), Mineral. Petrol., 2000, vol. 69, pp. 109–142.
Article
Google Scholar
Peterson, J.W. and Newton, R.C., CO2-enhanced melting of biotite-bearing rocks at deep-crustal pressure–temperature conditions, Nature, 1989, vol. 340, pp. 378–380.
Article
Google Scholar
Peterson, J.W. and Newton, R.C., Experimental biotite–quartz melting in the KMASH-CO2 system and the role of CO2 in the petrogenesis of granites and related rocks, Am. Mineral., 1990, vol. 75, pp. 1029–1042.
Google Scholar
Pettijohn, F.J., Sedimentary Rocks, New York: Harper & Row, 1975, vol. 3.
Google Scholar
Rajesh, H.M., Belyanin, G.A., Safonov, O.G., et al., Pyroxene-bearing low-and high- HREE TTGs from the northeastern margin of the Kaapvaal Craton, southern Africa: Implications for Archean geodynamics, Lithos, 2019, vol. 348, p. 105181.
Article
Google Scholar
Rapp, R.P. and Watson, E.B., Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling, J. Petrol., 1995, vol. 36, pp. 891–931.
Article
Google Scholar
Safonov, O.G., Tatarinova, D.S., van Reenen, D.D., et al., Fluid-assisted interaction of peraluminous metapelites with trondhjemitic magma within the Petronella shear-zone, Limpopo Complex, South Africa, Precambrian Res., 2014, vol. 253, pp. 114–145.
Article
Google Scholar
Safonov, O.G., Yapaskurt, V.O., Elburg, M., et al., P-T conditions, mechanism and timing of the localized melting of metapelites from the Petronella shear-zone and relationships with granite intrusions in the Southern Marginal Zone of the Limpopo Belt, South Africa, J. Petrol., 2018a, vol. 59, pp. 695–734.
Article
Google Scholar
Safonov, O.G., Reutsky, V.N., Varlamov, D.A., et al., Composition and source of fluids in high-temperature graphite-bearing granitoids associated with granulites: examples from the Southern Marginal Zone, Limpopo Complex, South Africa, Gondwana Res., 2018b, vol. 60, pp. 129–152.
Article
Google Scholar
Safonov, O.G., van Reenen, D.D., Yapaskurt, V.O., et al., Thermal and Fluid Effects of Granitoid Intrusions on Granulite Complexes: Examples from the Southern Marginal Zone of the Limpopo Complex, South Africa, Petrology, 2018, vol. 26, no. 6, pp. 617–639.
Article
Google Scholar
Safonov, O.G., Mityaev, A.S., Yapaskurt, V.O., et al., Carbonate-silicate inclusions in garnet as evidence for a carbonate-bearing source for fluids in leucocratic granitoids associated with granulites of the Southern Marginal Zone, Limpopo Complex, South Africa, Gondwana Res., 2020, vol. 77, pp. 147–167.
Article
Google Scholar
Santosh, M. and Omori, S., Co2 flushing: a plate tectonic perspective, Gondwana Res., 2008, vol. 13, pp. 86–102.
Article
Google Scholar
Santosh, M., Jayananda, M., and Mahabaleswar, B., Fluid evolution in the Closepet Granite - a magmatic source for CO2 in charnockite formation at Kabbaldurga, J. Geol. Soc. India, 1991, vol. 38, pp. 55–65.
Google Scholar
Santosh, M., Tanaka, K., and Yoshimura, Y., Carbonic fluid inclusions in ultrahigh-temperature granitoids from southern India, C.R. Geosci., 2005, vol. 337, pp. 327–335.
Article
Google Scholar
Satish-Kumar, M. and Santosh, M., A petrological and fluid inclusion study of calc-silicate-charnockite associations from southern Kerala, India: Implications for CO2 influx, Geol. Mag., 1998, vol. 135, pp. 27–45.
Article
Google Scholar
Sawyer, E.W., The influence of source rock type, chemical weathering and sorting on the geochemistry of clastic sediments from the Quetico metasedimentary belt, Superior Province, Canada, Chem. Geol., 1986, vol. 55, pp. 77–95.
Article
Google Scholar
Sawyer, E.W., Cesare, B., and Brown, M., When the continental crust melts, Elements, 2011, vol. 7, pp. 229–234.
Article
Google Scholar
Shaposhnikov, V.V., and Aranovich, L.Ya., Experimental study of model granite melting in the presence of alkali carbonate solutions at 400 MPa, Geochem. Int., 2015, vol. 53, no. 9, pp. 838–844.
Article
Google Scholar
Skjerlie, K.P. and Johnston, A.D., Fluid-absent melting behavior of an F-rich tonalitic gneiss at mid-crustal pressures: implications for the generation of anorogenic granites, J. Petrol., 1993, vol. 34, pp. 785–815.
Article
Google Scholar
Skora, S., Blundy, J.D., Brooker, R.A., et al., Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions, J. Petrol., 2015, vol. 56, pp. 953–980.
Article
Google Scholar
Srikantappa, C., Raith, M., and Touret, J.L.R., Synmetamorphic high-density carbonic fluids in the lower crust: evidence from the Nilgiri granulites, southern India, J. Petrol., 1992, vol. 33, pp. 733–760.
Article
Google Scholar
Stevens, G. and Clemens, J.D., Fluid-absent melting and the roles of fluids in the lithosphere: a slanted summary?, Chem. Geol., 1993, vol. 108, pp. 1–17.
Article
Google Scholar
Stevens, G., Clemens, J.D., and Droop, G.T., Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths, Contrib. Mineral. Petrol., 1997, vol. 128, pp. 352–370.
Article
Google Scholar
Tacchetto, T., Bartoli, O., Cesare, B., et al., Multiphase inclusions in peritectic garnet from granulites of the Athabasca granulite terrane (Canada): evidence of carbon recycling during Neoarchean crustal melting, Chem. Geol., 2019, vol. 508, pp. 197–209.
Article
Google Scholar
Thompson, A.B., Dehydration melting of pelitic rocks and the generation of H2O undersaturated granitic liquids, Am. J. Sci., 1982, vol. 282, pp. 1567–1595.
Article
Google Scholar
Thomsen, T.B. and Schmidt, M.W., Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle, Earth Planet. Sci. Lett., 2008, vol. 267, pp. 17–31.
Article
Google Scholar
Tiraboschi, C., Tumiati, S., Sverjensky, D., et al., Experimental determination of magnesia and silica solubilities in graphite-saturated and redox-buffered high-pressure COH fluids in equilibrium with forsterite + enstatite and magnesite + enstatite, Contrib. Mineral. Petrol., 2018, vol. 173, pp. 1–17.
Article
Google Scholar
Touret, J.L.R. and Huizenga, J.-M., Fluids in granulites, Geol. Soc. Am. Mem., 2011, vol. 207, pp. 25–37.
Google Scholar
Tsuno, K. and Dasgupta, R., Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon, Contrib. Mineral. Petrol., 2011, vol. 161, pp. 743–763.
Article
Google Scholar
Tsuno, K. and Dasgupta, R., The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction, Earth Planet. Sci. Lett., 2012, vol. 319, pp. 185–196.
Article
Google Scholar
Tsunogae, T., Santosh, M., Osanai, Y., et al., Very high-density carbonic fluid inclusions in sapphirine-bearing granulites from Tonagh Island in the Archean Napier Complex, East Antarctica: Implications for CO2 infiltration during ultrahigh-temperature (T > 1100°C) metamorphism, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 279–299.
Article
Google Scholar
van Reenen, D.D., Smit, C.A., Perchuk, L.L., et al., Thrust exhumation of the Neoarchean ultrahigh-temperature Southern Marginal Zone, Limpopo Complex: convergence of decompression-cooling paths in the hanging wall and prograde P-T paths in the footwall, Geol. Soc. Amer. Mem., 2011, vol. 207, pp. 189–212.
Google Scholar
van Reenen, D.D., Smit, C.A., Perchuk, A.L., et al., The Neoarchaean Limpopo orogeny: exhumation and regional-scale gravitational crustal overturn driven by a granulite diaper, The Archaean Geology of the Kaapvaal Craton, Southern Africa, Cham: Springer, 2019, pp. 185–224.
Google Scholar
Vielzeuf, D. and Holloway, J.R., Experimental determination of the fluid-absent melting relations in the pelitic system, Contrib. Mineral. Petrol., 1988, vol. 98, pp. 257–276.
Article
Google Scholar
Vielzeuf, D. and Montel, J.M., Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships, Contrib. Mineral. Petrol., 1994, vol. 117, pp. 375–393.
Article
Google Scholar
Weinberg, R.F. and Hasalova, P., Water-fluxed melting of the continental crust: a review, Lithos, 2015, vol. 212, pp. 158–188.
Article
Google Scholar
Wendlandt, R.F., Influence of CO2 on melting of model granulite facies assemblages—a model for the genesis of charnockites, Am. Mineral., 1981, vol. 66, pp. 1164–1174.
Google Scholar
White, R.W., Powell, R., Holland, T.J.B., et al., The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3, J. Metamorph. Geol., 2000, vol. 18, pp. 497–511.
Article
Google Scholar
White, R.W., Powell, R., Holland, T.J.B., et al., New mineral activity-composition relations for thermodynamic calculations in metapelitic systems, J. Metamorph. Geol., 2014, vol. 32, pp. 261–286.
Article
Google Scholar
White, R.W., Palin, R.M., and Green, E.C., High-grade metamorphism and partial melting in Archean composite grey gneiss complexes, J. Metamorph. Geol., 2017, vol. 35, pp. 181–195.
Article
Google Scholar
Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.
Article
Google Scholar
Zen E-an. Aluminum enrichment in silicate melts by fractional cryitallization: some mineralogic and petrographic constraints, J. Petrol., 1986, vol. 27, pp. 1095–1117.
Article
Google Scholar