Skip to main content

Cretaceous Monzonite-Granite-Migmatite Velitkenay Complex: Petrology, Geochemistry of Rocks and Zircons (U-Pb, Hf, O) as Applied to Reconstructing the Evolution of Magmatism and Continental Crust in Artic Alaska–Chukotka Block

Abstract

The Velitkenay monzonite-granite-migmatite massif is a granite-core gneiss dome on the Arctic coast of Chukotka and a key outcrop for understanding mid-Cretaceous magmatism and metamorphism of the Arctic Alaska–Chukotka terrane. The petrology and geologic history of the complex were investigated using whole rock major and trace element and isotopic analyses (Sr, Nd and Pb), as well as electron microprobe thermobarometry, zircon U-Pb geochronology, trace element geochemistry, and O and Lu-Hf isotopic methods. The massif consists of two distinctive Albian plutonic suites. Deformed 106–103 Ma monzonitoids represent the early phase of plutonism; they were melted from a relatively mature crustal source with the bulk composition εNd(i) from –5.5 to –7.9; TNd (DM-2st) = 1.4–1.6 Ga, and zircon composition εHf(i) from –11 to –7, δ18O from 10 to 8.4; and they evolved via assimilation and fractional crystallization processes. Late phase 102–101 Ma leucogranites (εNd(i) from –3.8 to –6.7, TNd (DM-2st) = 1.2–1.4 Ga) formed from melting of Neoproterozoic orthogneisses with mantlelike zircon (εHf(i) from +11 to +13, δ18O ~ 5.8) and differ from early phase monzonitoids by the systematic presence of inherited Neoproterozoic (660–600 Ma) zircon xenocrysts. Migmatized Neoproterozoic orthogneisses are exposed in the central part of the dome, whereas the country rock on the flanks of the dome are paragenisses and schists with Devonian protolith ages. The intrusion of monzonitoid magmas was syntectonic with early stages of exhumation of the Velitkenay massif, whereas the leucogranite phase of magma intruded after peak metamorphism and does not exhibit ductile deformation. Based on subhorizontal mineral stretching lineations along the flanks of the dome and overall sigmoidal plan view of the massif, structural doming appears related to localized transtension in a more regional dextral strike-slip geodynamic environment. U-Pb isotope-geochronological data make it possible to distinguish seven episodes of granitoid magmatism, of which three major, in terms of volume (Aptian Bilibino, Albian Chaun, and Turonian-Coniacian Okhotsk-Chukotka granitoid magmatism subprovince), reflect the maximum rates of growth and modification of the Chukotka crust. Subordinate, in terms of volume, magmatic events of the Neoproterozoic, Devonian, Permian-Triassic, Late Jurassic, and Valanginian-Hauterivian have also been reconstructed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Notes

  1. Additional materials for the Russian and English online versions of the article on the websites https://elibrary.ru/ and http://link.springer.com/ respectively provide: ESM_1.xlsx (Suppl. 1)—Results of U-Pb SHRIMP-RG dating of zircon from the Velitkenay monzonite–granite–migmatite complex and Chukotka granite massifs; ESM_2.xlsx (Suppl. 2)—Hf and O isotope composition in zircons from granitoids and orthogneisses of Chukotka.

REFERENCES

  1. Akinin, V.V. Late Mesozoic and Cenozoic Magmatism and Reworking of Lower Crust on the Northern Pacific Margin, Extended Abstract of Doctoral (Geol.-Min) Dissertation, Magadan: SVKNII DVO RAN, 2012.

  2. Akinin, V.V. and Kotlyar, I.N., GEOKhPOH—a computer database on isotope dating of mienrals, rocks, and ores of Northeast Russia, Magmatizm i orudenenie Severo-Vostoka Rossii (Magmatism and Mineralization of Northeast Russia), Byalobzheskii, S.G, Eds., Magadan: SVKNII DVO RAS, 1997, pp. 313–318.

  3. Akinin V.V. and Miller, E.L., Evolution of calc-alkaline magmas of the Okhotsk–Chukotka Volcanic Belt, Petrology, 2011, vol. 19. No. 3, pp. 237–277.

    Article  Google Scholar 

  4. Akinin, V.V., Gelman, M.L., Sedov, B.M., et al., Koolen metamorphic complex, NE Russia: implications for the tectonic evolution of the Bering Strait region, Tectonics, 1997, vol. 16, pp. 713–729.

    Article  Google Scholar 

  5. Akinin, V.V., Amato, J.M., Miller, E.L., et al., New geochronological data on pre-Mesozoic rocks (Neoproterozoic to Devonian) of Arctic Chukotka, International Conference on Arctic Margins VI. International Conference on Arctic Margins. Abstracts, Fairbanks: University of Alaska, 2011, vol. 6, pp. 6–6.

  6. Akinin, V.V., Miller, E.L., Gotlieb, E., and Polzunenkov, G., Geochronology and geochemistry of Cretaceous magmatic rocks of Arctic Chukotka: an update of GEOCHRON-2.0, Geophys. Res. Abstr., 2012, vol. 14, p. EGU20123876.

    Google Scholar 

  7. Akinin, V.V., Andronikov, A.V., Mukasa S.B., and Miller, E.L., Cretaceous lower crust of the continental margins of the Northern Pacific: petrological and geochronological data on lower to middle crustal xenoliths, Petrology, 2013, vol. 21, no. 1, pp. 28–65.

    Article  Google Scholar 

  8. Akinin, V.V., Gottlieb, E.S., Miller, E.L., et al., Age and composition of basement beneath the De Long Archipelago, Arctic Russia, based on zircon U-Pb geochronology and O-Hf isotopic systematics from crustal xenoliths in basalts of Zhokhov Island, Arktos (J. Arctic Geosci.), 2015, vol. 1, no. 1, pp. 1–10. https://doi.org/10.1007/s41063-015-0016-6

  9. Akinin, V.V., Miller, E.L., Toro, J., et al., Episodicity and the dance of Late Mesozoic magmatism and deformation along the northern Circum-Pacific margin: NE Russia to the Cordillera, Earth-Sci. Rev., 2020, vol. 208, Article 103272.

    Article  Google Scholar 

  10. Amato, J.M., Aleinikoff, J.N., Akinin, V.V., et al., Age, chemistry, and correlations of Neoproterozoic–Devonian igneous rocks of the Arctic Alaska–Chukotka terrane: an overview with new U-Pb ages, Dumoulin, J.A. and Till, A.B., Eds., Reconstruction of a Late Proterozoic to Devonian Continental Margin Sequence, Northern Alaska, Its Paleogeographic Significance, and Contained Base-Metal Sulfide Deposits, Geol. Soc. Am., Spec. Pap., 2014, no. 506, pp. 29–57. https://doi.org/10.1130/2014.2506(02).

  11. Amato, J.M., Toro, J., Miller, E.L., et al., Late Proterozoic–Paleozoic evolution of the Arctic Alaska Chukotka terrane based on U-Pb igneous and detrital zircon ages: implications for neoproterozoic paleogeographic reconstructions, Geol. Soc. Am. Bull., 2009, vol. 121, pp. 1219–1235.

    Article  Google Scholar 

  12. Anderson, J.L. and Smith, D.R., The effects of temperature and fO2 on the Al-in-hornblende barometer, Am. Mineral., 1995, vol. 80, nos. 5–6, pp. 549–559.

    Article  Google Scholar 

  13. Baltybaev, Sh.K., Migmatite formation in the potassic zone of the Northern Ladoga reion: thermodynamic mode of melting and crystallization, geochemical modeling of element partitioning in the protolith–melt system, Tr. KarNTs RAN, Precambrian Geology Ser., 2012, pp. 1–16.

    Google Scholar 

  14. Barth, A.P. and Wooden, J.L., Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas, Chem. Geol., 2010, vol. 277, pp. 149–159.

    Article  Google Scholar 

  15. Batchelor, R.A. and Bowden, P., Petrogenetic interpretation of granitoid rock series using multicationic parameters, Chem. Geol., 1985, vol. 48, pp. 43–55.

    Article  Google Scholar 

  16. Black, L.P., Kamo, S.L., Allen, C.M., et al., Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect: SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 2004, vol. 205, pp. 115–140.

    Article  Google Scholar 

  17. Blundy, J.D. and Holland, T.J., Calcic amphibole equilibria and a new amphibole–plagioclase geothermometer, Contrib. Mineral. Petrol., 1990, vol. 104, no. 2, pp. 208–224.

    Article  Google Scholar 

  18. O’Brien, T.M. and Miller, E.L., Continuous zircon growth during long-lived granulite facies metamorphism: a microtextural, U-Pb, Lu-Hf and trace element study of Caledonian rocks from the Arctic, Contrib. Mineral. Petrol., 2014, vol. 168, no. 4, pp. 1071–1090.

    Article  Google Scholar 

  19. Brown, M., Crustal melting and granite magmatism: key issues, Phys. Chem. Earth, 2001, vol. 26, pp. 201–212. https://doi.org/10.1016/S1464-1895(01)00047-3

    Article  Google Scholar 

  20. Brown, M., Averkin, Y.A., McLellan, E.L., and Sawyer, E.W., Melt segregation in migmatites, J. Geophys. Res., 1995, vol. 100, pp. 15655–15679.

    Article  Google Scholar 

  21. Brown, C.R., Yakymchuk, C., Brown, M., et al., From source to sink: petrogenesis of Cretaceous anatectic granites from the Fosdick migmatite-granite complex, west antarctica, J. Petrol., 2016, vol. 57, no. 7, pp. 1241–1278.

    Article  Google Scholar 

  22. Brumley, K., Miller, E.L., Konstantinou, A., et al., First bedrock samples dredged from submarine outcrops in the Chukchi borderland, Arctic Ocean, Geosphere, 2015, vol. 11, no. 1, pp. 76–92. https://doi.org/10.1130/GESO10.44.1

    Article  Google Scholar 

  23. Bryan, S., Silicic large igneous provinces, Episodes, 2007, vol. 30, pp. 20–31.

    Article  Google Scholar 

  24. Charlier, B.L., Ginibre, C., Morgan, D., et al., Methods for the microsampling and high-precision analysis of strontium and rubidium isotopes at single crystal scale for petrological and geochronological applications, Chem. Geol., 2006, vol. 232, pp. 114–133.

    Article  Google Scholar 

  25. Churkin, M.,Jr., Whitney, J.W., and Rogers, J.F., The North American–Siberian connection, a mosaic of craton fragments in a matrix of oceanic terranes, Tectonostratigraphic Terranes of the Circum-Pacific Region: Earth Science, Series, Howell, D.G., Eds., Houston: Circul-Pacific Council for Energy and Mineral Resources, 1985, pp. 79–84.

    Google Scholar 

  26. Clemens, J.D. and Droop, G.T.R., Fluids, P-T paths and the fates of anatectic melts in the Earth’s crust, Lithos, 1998, vol. 44, pp. 21–36.

    Article  Google Scholar 

  27. Coble, M.A., Vazquez, J.A., Barth, A.P., et al., Trace element characterisation of MAD-559 zircon reference material for ion microprobe analysis, Geostand. Geoanalyt. Res., 2018, vol. 42, pp. 481–497. https://doi.org/10.1111/ggr.12238

    Article  Google Scholar 

  28. Corfu, F., Polteau, S., Planke, S., et al., U-Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea large igneous province, Geol. Mag., 2013, vol. 150, no. 6, pp. 1127–1135. https://doi.org/10.1017/S0016756813000162

    Article  Google Scholar 

  29. Dudkinskii, D.V., Kozlov, V.D., and Efremov, S.V., Petrological–geochemical features and geodynamic conditions of formation of ore-bearing granitoids of Chukotka, Geol. Geofiz., 1997, vol. 38, no. 7, pp. 1202–1215.

    Google Scholar 

  30. Efremov, S.V., Geochemistry and genesis of ultrapotassic and potassic magmatic rocks on the eastern shore of Chaun Bay in Chukotka and their role in the metallogenic specialization of tin-bearing granitoids, Russ. J. Pac. Geol, 2009, vol. 3, pp, 80–90.

  31. Efremov, S.V., Rare-Metal Granitoids of Chukotka. Geochemistry, Sources, and Models of Formation, Extended Abstract of Doctoral (Geol.-Min.) Dissertation, Irkutsk: IGKh SO RAN, 2012.

  32. Ferry, J.M. and Watson, E.B., New thermodynamic models and revised calibrations for the Ti-in-zircon geothermometer, Contrib. Mineral. Petrol., 2007, vol. 154, pp. 429–437.

    Article  Google Scholar 

  33. Fisher, C.M., Vervoort, J.D., and DuFrane, S.A., Accurate hf isotope determinations of complex zircons using the “laser” ablation split “stream” method, Geochem. Geophys. Geosyst., 2014, vol. 15, pp. 121–139.https://doi.org/10.1002/2013GC004962

  34. Frost, B.R., Arculus, R.J., Barnes, C.G., et al., A geochemical classification of granitic rocks, J. Petrol., 2001, vol. 42, pp. 2033–2048.

    Article  Google Scholar 

  35. Gel’man, M.L., Phanerozoic granite-metamorphic cupolas on Northeastern Siberia. Paper 2. Magmatism, metamorphism, and migmatization in Late Mesozoic cupolas, Tikhookean. Geol., 1996, vol. 15, no. 1, pp. 84–93.

    Google Scholar 

  36. Gottlieb, E.S., Pease, V., Miller, E.L., and Akinin, V.V., Neoproterozoic basement history of wrangel island and arctic chukotka: integrated insights from zircon U-Pb, O, and Hf isotopic studies, Geol. Soc. Lond. Spec. Publ., 2018, no. 460, pp. 183–206.

  37. Hart, S.R., А large-scale isotope anomaly in the Southern Hemisphere, Nature, 1984, vol. 309, pp. 753–757.

  38. Katkov, S.M., Striklend, A., Miller, E.L., and Toro, J., Age of granite batholiths in the Anyui–Chukotka Foldbelt, Dokl. Earth Sci., 2007, vol. 414, no. 4, pp. 515–518.

    Article  Google Scholar 

  39. Korzhinskii, D.S., Granitization as mamatic replacement, Izv. AN SSSR., Ser. Geol., 1952, no. 2, pp. 56–69.

  40. Kos’ko, M.K., Cecile, M.P., Harrison, J.C., et al., Geology of Wrangel Island, between Chukchi and East Siberian seas, northeastern Russia, Geol. Surv. Canada Bull., 1993, vol. 461, p. 101.

    Google Scholar 

  41. Ledneva, G.V., Bazylev, B.A., Sokolov, S.D., and Belyatsky, B.V., Permian–Triassic within-plate magmatism of the Chukotka Fold System: regional compositional variations and geodynamic interpretation, Materialy XIII Vserossiiskogo petrograficheskogo soveshchaniya “Petrologiya i geodinamika geologicheskikh protsessov” (Proc. 13th All-Russian Petrographic Conference “Petrology and Geodynamics of Geological Processes), Irkutsk: IGKh SO RAN, 2021, vol. 2, pp. 107–109.

  42. Liew, T.C. and Hofmann, A.W., Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study, Contrib. Mineral. Petrol., 1988, vol. 98, pp. 129–138.

    Article  Google Scholar 

  43. Luchitskaya, M.V. and Sokolov, S.D., Stages of Granitoid Magmatism and Formation of the Continental Crust of Eastern Arctic, Geotectonics, 2021, vol. 55, pp. 717–740.

    Article  Google Scholar 

  44. Luchitskaya, M.V., Sokolov, S.D., Kotov, A.B., et al., Late Paleozoic granitic rocks of the Chukchi Peninsula: composition and location in the structure of the Russian Arctic, Geotectonics, 2015, vol. 49, pp. 243–268.

    Article  Google Scholar 

  45. Luchitskaya, M.V., Sokolov, S.D., and Moiseev, A.V., Stages of Late Mesozoic granitoid magmatism in Chukotka, Northeast Russia, Dokl. Earth Sci., 2013, vol. 450, pp. 479–483. https://doi.org/10.1134/S1028334X13050061

    Article  Google Scholar 

  46. Luchitskaya M.V., Sokolov S.D., Verzhbitsky, V.E., et al., Roles of postcollisional granitoids and Aptian–Albian extension in tectonic evolution of Mesozoic structures on Chukchi Peninsula, Northeastern Russia, Dokl. Earth Sci., 2019, vol. 484, pp. 48–52.

    Article  Google Scholar 

  47. Luchitskaya, M.V., Moiseev, A.V., Sokolov, S.D., et al., Neoproterozoic granitoids and rhyolites of wrangel island: geochemical affinity and geodynamic setting in the eastern arctic region, Lithos, 2017, vol. 292-293, pp. 15–33.

    Article  Google Scholar 

  48. Ludwig, K.R., User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel, Berkley Geochronol. Center Spec. Publ., 2003, no. 4.

  49. McDonough, W.F. and Sun, S.S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  50. Mehnert, K.R., Migmatites and the Origin of Granitic Rocks, New York: Elsevier, 1968.

    Google Scholar 

  51. Middlemost, E.A.K., Magmas and magmatic rocks: an introduction to igneous petrology, Geol. Mag., 1986, vol. 123, pp. 87–88. https://doi.org/10.1017/S0016756800026716

    Google Scholar 

  52. Migmatizatsiya i granitoobrazovanie v razlichnykh termodinamicheskikh rezhimakh (Migmatization and Granite Formation in Different Thermodynamic Modes), Leningrad: Nauka, 1985.

  53. Miller, E.L. and Verzhbitsky, V.E., Structural studies near Pevek, Russia: implications for formation of the East Siberian shelf and Makarov Basin of the Arctic Ocean, Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov. Stephan Mueller Spec. Publ., 2009, vol. 4, pp. 223–241.

    Article  Google Scholar 

  54. Miller, E.L., Katkov, S.M., Strickland, A., et al., Geochronology and thermochronology of Cretaceous plutons and metamorphic country rocks, Anyui–Chukotka fold belt, north-east Arctic Russia, Geology and Tectonic Origins of Northeast Russia: A Tribute to Leonid Parfenov. Stephan Mueller Spec. Publ. Ser., 2009, vol. 4, pp 157–175

    Article  Google Scholar 

  55. Miller, E.L., Gehrels, G.E., Pease, V., and Sokolov, S., Stratigraphy and U-Pb detrital zircon geochronology of Wrangel Island, Russia: implications for Arctic paleogeography, Am. Ass. Petrol. Geol. Bull., 2010, vol. 94, pp. 665–692.

    Google Scholar 

  56. Miller, E.L., Kuznetsov, N., Soboleva, A., et al., Baltica in the Cordillera?, Geology, 2011, vol. 39, no. 8, pp. 791–794.

    Article  Google Scholar 

  57. Miller, E.L., Akinin, V.V., Dumitru, T.A., et al., Deformational history and thermochronology of Wrangel Island, East Siberian shelf and coastal Chukotka, Arctic Russia, Geol. Soc. Lond. Spec. Publ., 2018, no. 460, pp. 207–238. https://doi.org/10.1144/SP460.7

  58. Milord, I., Sawyer, E.W., and Brown, M., Formation of diatexite migmatite and granite magma during anatexis of semi-pelitic metasedimentary rocks: an example from St. Malo, France, J. Petrol., 2001, vol. 42, pp. 487–505.

    Article  Google Scholar 

  59. Milov, A.P., Pozdnemezozoiskie granitoidnye formatsii Tsentral’noi Chukotki (Late Mesozoic Granitoid Formations of Central Chukotka), Novosibirsk: SO RAN, 1975.

  60. Milov, A.P. and Ivanov, V.S., Late Mesozoic granitoids of Central Chukotka, Tr. SVKNII SO AN SSSR, Magadan: SVKNII, 1965, vol. 12, pp. 141–187.

    Google Scholar 

  61. Natal’in, B.A., Amato, J.M., Toro, J., and Wright, J.E., Paleozoic rocks of northern Chukotka Peninsula, Russian Far East: implications for the tectonics of the Arctic region, Tectonics, 1999, vol. 18, pp. 977–1003.

    Article  Google Scholar 

  62. Nokleberg, W.J., Parfenov, L.M., Monger, J.W.H., et al., Phanerozoic tectonic evolution of the Circum-North Pacific, U.S, Geol. Surv. Open-File Rept., 1998, p. 125.

    Book  Google Scholar 

  63. Parfenov L.M. Kontinental’nye okrainy i ostrovnye dugi mezozoid Severo-Vostoka Azii (Continental Margins and Island Arcs of Mesozoids of Northeastern Asia), Novosibirsk: Nauka, 1984.

  64. Peace, A.L., McCaffrey, K.J.W., Imber, J., et al., The role of pre-existing structures during rifting, continental breakup and transform system development, offshore West Greenland, Basin Res., 2018, vol. 30, pp. 373–394. https://doi.org/10.1111/bre.12257

    Article  Google Scholar 

  65. Pearce, J.A., Harris, N.W., and Tindle, A.G., Trace element discrimination diagrams for the tectonic interpretation of granitic rocks, J. Petrol., 1984, vol. 25, pp. 956–983.

    Article  Google Scholar 

  66. Peccerillo, R. and Taylor, S.R., Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey, Contrib. Mineral. Petrol., 1976, vol. 58, pp. 63–81.

    Article  Google Scholar 

  67. Polzunenkov, G.O., Evaluation of P–T and fO2 conditions of crystallization of monzonitic rocks of the Velitkenay granite–migmatite massif (Arctic Chukotka) based on mineral thermobaro- and oxybarometry, Russ. J. Pac. Geol., 2018, vol. 5, pp. 429–442.

    Article  Google Scholar 

  68. Polzunenkov, G.O., Akinin, V.V., and Cherepanova, I.Yu., New data on the age and composition of the Velitkenay and Koevkun granite–gneiss massifs (Arctic Chukotka): application to the development of models of granite-related mineralization, Zoloto severnogo obramleniya Patsifiki. II Mezhdunarodnyi gorno-geologicheskii forum. Tezisy (Gold of the Northern Pacific Margin. 2nd International Mining–Geological Forum. Theses), Magadan: SVKNII DVO RAN, 2011, pp. 170–171.

  69. Rowe, H., Petrogenesis of Plutons and Hypabyssal Rocks of the Bering Strait Region, Chukotka, Russia, Houston, Rice University 1998.

    Google Scholar 

  70. Safonova, I., Maruyama, S., Hirata, T., et al., La-ICP-MS U-Pb ages of detrital zircons from Russia largest rivers: implications for major granitoid events in Eurasia and global episodes of supercontinent formation, J. Geodynam., 2010, vol. 50, pp. 134–153.

    Article  Google Scholar 

  71. Sawer, E.W., Melt-segregation and magma flow in migmatites: implications for the generation of granite magmas, Trans. R. Soc. Edinb.: Earth Sci., 1996, vol. 87, pp. 85–94.

    Google Scholar 

  72. Sederholm, J.J., On migmatites and associated Precambrian rocks of southwestern Finland. I. the Pellinge region, Bull. Comm. Geol. Finl., 1923, no. 58.

  73. Shand, S.J., Eruptive Rocks., Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite, 2-nd ed., New York: John Wiley, Sons, 1943.

    Google Scholar 

  74. Sircombe, K.N., Mountains in the shadows of time: three-dimensional density distribution mapping of U-Pb isotopic data as a visualization aid for geochronological information in concordia diagrams, Geochem., Geophys., Geosyst., 2007, vol. 7, p. Q07013. https://doi.org/10.1029/2005GC001052

    Article  Google Scholar 

  75. Sokolov, S.D., Bondarenko, G.E., Morozov, O.L., et al., Nappe-type tectonics of the South Anyui Suture in the western Chukot Peninsula, Dokl. Earth Sci., 2001, vol. 376, 7–12.

    Google Scholar 

  76. Solar, G.S. and Brown, M., Petrogenesis of migmatites in Maine, USA: possible source of peraluminous leucogranite in plutons?, J. Petrol., 2001, vol. 42, pp. 789–823.

    Article  Google Scholar 

  77. Stevens, G. and Clemens, J.D., Fluid-absent melting and the roles of fluids in the litho-sphere: a slanted summary?, Chem. Geol., 1993, vol. 108, pp. 1–17. https://doi.org/10.1016/0009-2541(93)90314-9

    Article  Google Scholar 

  78. Stacey J.S. and Kramers J.D. Approximation of terrestrial lead isotope evolution by a two-stage model, Earth Planet. Sci. Lett., 1975, vol.  26, no.  2, pp. 207–221.

  79. Streckeisen, A.L. and LeMaitre, R.W., Chemical approximation to modal QAPF classification of the igneous rocks, Neus Jahrb. Mineral., 1979, vol. 136, pp. 169–206.

    Google Scholar 

  80. Sudovikov, N.G., Migmatites, their genesis, and methods of study, Materialy issledovanii v Karelii (Materials of Studies in Karelia), Tr. LAGED AN SSSR, 1955, vol. 5, pp. 97–174.

    Google Scholar 

  81. Taylor, S.R. and McLennan, S.M., The geochemical evolution of the continental crust, Rev. Geophys., 1995, vol. 33, pp. 241–265. https://doi.org/10.1029/95RG00262

    Article  Google Scholar 

  82. Tibilov, I.V., Osobennosti geologicheskogo razvitiya Severa Chukotki s pozitsii termodinamicheskoi paradigmy endogennykh protsessov (Geological Evolution of Northern Chukotka based on Thermodynamic Paradigm of Endogenous Processes), Magadan: SVKNII DVO RAN, 2005.

  83. Tikhomirov, P.L., Akinin, V.V., and Nakamura, E., “Mesozoic magmatism in the central Chukotka Peninsula: new U–Pb geochronological data and their geodynamic interpretation,” Dokl. Earth Sci., 2008, vol. 419, pp. 261–265.

    Article  Google Scholar 

  84. Tikhomirov, P.L., Kalinina, E.A., Kobayashi, K., and Nakamura, E., Late Mesozoic silicic magmatism of the North Chukotka area (NE Russia): age, magma sources, and geodynamic implications, Lithos, 2008, vol. 105, pp. 329–346.

    Article  Google Scholar 

  85. Tikhomirov, P.L., Luchitskaya, M.V., and Shats, A.L., Age of granitoid plutons, North Chukotka: problem formulation and new SHRIMP U–Pb zircon datings, Dokl. Earth Sci., 2011, vol. 440, pp. 1363–1366.

    Article  Google Scholar 

  86. Trail, D., Mojzsis, S.J., Harrison, SchmittA.K., et al., Constraints on hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements, Geochem., Geophys., Geosyst., 2007, vol. 8, p. Q06014. https://doi.org/10.1029/2006GC001449

    Article  Google Scholar 

  87. Valley, J.W., Oxygen isotopes in zircon, Rev. Mineral. Geochem., 2003, vol. 53, pp. 343–386.

    Article  Google Scholar 

  88. Vigneresse, J.L., Barbey, P., and Cuney, M., Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer, J. Petrol., 1996, vol. 37, pp. 1579–1600.

    Article  Google Scholar 

  89. Wiedenbeck, M. Hanchar, J.M., et al., Further characterisation of the 91500 zircon crystal, Geostand. Geoanalyt. Res., 2004, vol. 28, pp. 9–39.

    Article  Google Scholar 

  90. Williams, I.S., U-Th-Pb geochronology by ion microprobe, Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Mckibben, M.A., Shanks, W.C., Ridley, W.I., Rev. Econom. Geol., 1998, vol. 7, pp. 1–35.

    Article  Google Scholar 

  91. Yakymchuk, C., Brown, M., Clark, C., et al., Decoding polyphase migmatites using geochronology and phase equilibria modelling, J. Metamorph. Geol., 2015, vol. 33, pp. 203–230.

    Article  Google Scholar 

  92. Zheltovskii, V.G., Gosudarstvennaya geologicheskaya karta SSSR masshtaba 1 : 200 000. Ser. Anyuisko-Chaunskaya. List R-60-XXVII, XXVIII: Ob. Zap (State Geological Map of the USSR on a Scale 1 : 200 000. Anyui–Chaun Series. Sheet R-60-XXVII, XXVIII: Explanatory Notes), Magadan: TsKTE SVTGU, 1980.

Download references

ACKNOWLEDGMENTS

The authors are grateful to M.V. Luchitskaya and A.A. Sorokin for comments that improved the text of the manuscript.

Funding

The research was supported by a CRDF grant RUG1-7089-XX-13 (field work, isotope-geochronological studies of zircon), as well as Russian Science Foundation grant no. 20-17-00169 and SEC “North: Territory of Sustainable Development” (final isotopic geochemistry study of rocks, finalizing of manuscript).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Akinin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akinin, V.V., Polzunenkov, G.O., Gottlieb, E.S. et al. Cretaceous Monzonite-Granite-Migmatite Velitkenay Complex: Petrology, Geochemistry of Rocks and Zircons (U-Pb, Hf, O) as Applied to Reconstructing the Evolution of Magmatism and Continental Crust in Artic Alaska–Chukotka Block. Petrology 30, 227–257 (2022). https://doi.org/10.1134/S086959112203002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959112203002X

Keywords:

  • continental crust
  • granitoid magmatism
  • isotopic geochemistry
  • zircon
  • U-Pb
  • Hf and O isotope systems
  • SIMS method
  • Arctic Alaska–Chukotka terrane
  • Arctic