Skip to main content

Experimental Study of the Multicomponent Chemical Diffusion of Major Components (SiO2, Al2O3, Na2O, CaO, MgO, and FeO) and the \(\text{CO}_{3}^{2-}\) Anion at Interaction between Basalt and Kimberlite Melts under a Moderate Pressure

Abstract

The paper presents the first experimental results on the chemical interdiffusion of major components (SiO2, Al2O3, Na2O, CaO, MgO, and FeO) and the \(\text{CO}_{3}^{2-}\) anion at interaction between basalt and kimberlite melts under moderate pressures. The research was carried out using a high gas pressure apparatus of original design at Ar or CO2 pressures of 100 MPa and a temperature of 1300°C, with the use of the method of diffusion pairs. It is established that the rate of the oncoming chemical diffusion of all major components of melts (SiO2, Al2O3, Na2O, CaO, and MgO) and \({\text{CO}}_{3}^{{2 - }}\) anion is almost identical at the interaction of model basalt and kimberlite carbonate-containing melts and is approximately one order of magnitude higher than the diffusion rate of these components at the interaction of melts in the more polymerized andesite–basalt model system. The latter is explained by the significantly lower viscosity of the boundary melt (Montana boundary), which is formed during the interaction of model basalt and kimberlite melts. The equal diffusion rates of CaO and the \({\text{CO}}_{3}^{{2 - }}\) anion indicate that the CaCO3 carbonate diffuses from kimberlite to basalt (both model and natural) melts by means of the diffusion of the end members. The pattern of the diffusion processes significantly changes when melt of natural magnesian basalt interacts with model kimberlite. Thereby calcite diffuses into magnesian basalt also by means of diffusion of the end members. The diffusion rates of all other components of the melts (SiO2, MgO, and FeO) significantly increase. A weak exponential concentration dependence of all diffusing components is determined, with this dependence close to D(i) = constant.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Bol’shoe treshchinnoe Tolbachinskoe izverzhenie 1975–1976 gg., Kamchatka (Great Tolbachik Fissure Eruptions. Kamchatka), Moscow: Nauka, 1984.

  2. Bowen, N.L., Diffusion in silicate melts, J. Geol., 1921, vol. 29, pp. 295–317.

    Article  Google Scholar 

  3. Crank, J., The Mathematics of Diffusion, London: Oxford University Press, 1975.

    Google Scholar 

  4. Dalton, J.A. and Presnall, D.C., The continuum of primary carbonatitic–kimberlite melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa, J. Petrol., 1998, vol. 39, pp. 1953–1964.

    Google Scholar 

  5. Dasgupta, R. and Hirschmann, M.M., Melting in the earth’s deep upper mantle caused by carbon dioxide, Nature, 2006, vol. 440, pp. 659–662.

    Article  Google Scholar 

  6. Dingwell, D.B., Copurtial, P., Giordano, D., and Nichols, A.R.L., Viscosity of peridotite liquid, Earth Planet. Sci. Lett., 2004, vol. 226, pp. 127–138.

    Article  Google Scholar 

  7. Kamenetsky, V.S., Kamenetsky, M.B., Weiss, Y., et al., How unique is the Udachnaya-East kimberlite? Comparison with kimberlites from the Slave Craton (Canada) and SW Greenland, Lithos, 2009, vol. 112S, pp. 334–346.

    Article  Google Scholar 

  8. Kavanagh, J.L. and Sparks, R.S.J., Temperature changes in ascending kimberlite magma, Earth Planet. Sci. Lett., 2009, vol. 286, pp. 404–413.

    Article  Google Scholar 

  9. Kopylova, M.G., Matveev, S., and Raudseep, M., Searching for parental kimberlite melt, Geochim. Cosmochim. Acta, 2007, vol. 71, pp. 3616–3629.

    Article  Google Scholar 

  10. Kress, V.C. and Ghiorso, M.S., Multicomponent diffusion in basaltic melts, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 313–324.

    Article  Google Scholar 

  11. Liang, Y., Multicomponent diffusion in molten silicates: theory, experiments, and geological applications, Rev. Mineral. Geochem., 2010, vol. 72, pp. 409–446.

    Article  Google Scholar 

  12. Le Maitre, R.W., The chemical variability of some common igneous rocks, J. Petrol., 1976, vol. 117, no. 4, pp. 589–637.

    Article  Google Scholar 

  13. Michell, R.H., Petrology of hypabyssal kimberlites: relevance to primary magma compositions, J. Volcanol. Geotherm. Res., 2008, vol. 174, pp. 1–8.

    Article  Google Scholar 

  14. Persikov, E.S., Viscosity of model and magmatic melts under P-T parameters, of the Earth’s crust and upper mantle, Russ. Geol. Geophys., 1998, vol. 39, no. 12, pp. 1780–1792.

    Google Scholar 

  15. Persikov, E.S. and Bukhtiyarov, P.G., Viscosity of magmatic melts: improved structural–chemical model, Chem. Geol., 2020, vol. 556. https://doi.org/10.1016/j.chemgeo.2020.119820

  16. Persikov, E.S., Bukhtiyarov, P.G., and Nekrasov, A.N., Osobennosti vstrechnoi khimicheskoi diffuzii petrogennykh komponentov (SiO2, Al2O3, Na2O, CaO, MgO) in model and naturalmelts of the andesite–basalti system at high pressures in relation with their viscosity, XII Mezhdunarodnaya konferentsiya: Fiziko-khimicheskie i petrofizicheskie issledovaniya v naukakh o Zemle (12th International Conference on Physicochemical and Petrophysical Studies in the Earth’s Sciences), Moscow: IGEM RAN, 2011, pp. 236–239.

  17. Persikov, E.S., Bukhtiyarov, P.G., and Sokol, A.G., Viscosity of haplokimberlite and basaltic melts at high pressures, Chem. Geol., 2018, vol. 497, pp. 54–63.

    Article  Google Scholar 

  18. Price, S.E., Russell, J.K., and Kopylova, M.G., Primitive magma from the Jericho Pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry, J. Petrol., 2000, vol. 47, pp. 789–808.

    Article  Google Scholar 

  19. Sharygin, I.S., Litasov, K.D., Shatsky, A.F., et al., Melting of kimberlite of the Udachnaya-East Pipe: experimental study at 3–6.5 GPa and 900–1500C, Dokl. Earth Sci., 2013, vol. 448, no. 2, pp. 200–205.

    Article  Google Scholar 

  20. Sparks, R.S.J., Baker, L., Brown, R.J., et al., Dynamical constraints of kimberlite volcanism, J. Volcanol. Geotherm. Res., 2006, vol. 155, pp. 18–48.

    Article  Google Scholar 

  21. Sparks, R.S.J., Brooker, R.A., Field, M., et al., The nature of erupting kimberlite melts, Lithos, 2009, vol. 112, pp. 429–438.

    Article  Google Scholar 

  22. Watson, E.B., Diffusion in volatile-bearing magmas, Volatiles in Magmas, Carrol, M.R. and Holloway, J.R. Eds., Rev. Mineral. Geochem., 1994, vol. 30, pp. 371–411.

    Google Scholar 

  23. Watson, E.B. and Baker, D.R., Chemical diffusion in magma: an overview of experimental results and geochemical applications, Physical Chemistry in Magma, Perchuk, L.L. and Kushiro, I., Eds., New York: Springer, 1991.

    Google Scholar 

  24. Watson, E.B., Sneeringer, M.A., and Ross, A., Diffusion of dissolved carbonate in magmas: experimental results and applications, Earth Planet. Sci. Lett., 1982, vol. 61, pp. 346–358.

    Article  Google Scholar 

  25. Wyllie, P.J., The origin of kimberlite, J. Geophys. Res., 1980, vol. 85, pp. 6902–6910.

    Article  Google Scholar 

  26. Yoder, H.S., Contemporaneous basaltic and rhyolitic magmas, Am. Mineral., 1973, vol. 5, pp. 153–171.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank G.V. Bondarenko (Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences) for assistance with using Raman spectroscopy in analyzing the dissolution forms of CO2 in melts. L.Ya. Aranovich (Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences) is thanked for valuable comments that undoubtedly led us to improve the content of the manuscript.

Funding

This study was carried out under government-financed research project FMUF-2022-0004 for the Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. S. Persikov, P. G. Bukhtiyarov or A. N. Nekrasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Persikov, E.S., Bukhtiyarov, P.G. & Nekrasov, A.N. Experimental Study of the Multicomponent Chemical Diffusion of Major Components (SiO2, Al2O3, Na2O, CaO, MgO, and FeO) and the \(\text{CO}_{3}^{2-}\) Anion at Interaction between Basalt and Kimberlite Melts under a Moderate Pressure. Petrology 30, 325–335 (2022). https://doi.org/10.1134/S0869591122020060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122020060

Keywords:

  • multicomponent chemical diffusion
  • basalt natural and model melts
  • model kimberlite melt
  • high pressure and temperature