Skip to main content
Log in

Paleogene Volcanism in the Northern Okhotsk Region

  • Published:
Petrology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

>Abstract

The coastal northwestern part of the Sea of Okhotsk hosts local volcanic fields of olivine–two pyroxene andesites and basaltic andesites of the Kytyima volcanic complex, which were dated at about 48 ± 2 Ma (U–Pb, 40Ar/39Ar, and K-Ar methods). The age of the eruptions correlates with that of bottom sediments in the Sea of Okhotsk and may reflect local stages of extension on the continental margin of northeast Asia. The geochemistry of the lavas makes it possible to classify them as highly magnesian, calc-alkaline, moderately potassic volcanic series with clearly seen negative Nb, Ta, and Ti anomalies and with positive Sr and Pb ones. The isotopic composition of the rocks [εNd(T) = 2.4–5.5, 87Sr/86Sr(0) = 0.703415–0.704175] and the relatively “young” Cambrian Nd model ages of the Paleogene volcanic rocks indicate that the melts were derived from a mantle source depleted in radiogenic isotopes (presumably, fragments of the Cretaceous slab under the complexes of the Uda–Murgal ensimatic island arc), which later experienced fluid-assisted metasomatism and enrichment in trace incompatible elements. Variations in isotope composition and in concentrations of major and trace elements in the lavas were controlled by decompressional fractional crystallization without indications of any significant crustal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Akinin, V.V. and Leonova, V.V., Helium isotope composition and K–Ar age of olivine melanephelinites in mantle xenoliths of the Viligin volcanic field (Northern Baikal Region), Vestn. SVNTS DVO RAS, 2010, no. 1, pp. 25–32.

  2. Akinin, V.V. and Miller, E.L., Evolution of calc-alkaline magmas of the Okhotsk–Chukotka Volcanic Belt, Petrology, 2011, vol. 19, no. 3, pp. 237–277.

    Article  Google Scholar 

  3. Akinin, V.V., Andronikov, A.V., Mukasa, S.B., and Miller, E.L., Cretaceous lower crust of the continental margins of the Northern Pacific: petrological and geochronological data on lower to middle crustal xenoliths, Petrology, 2013, vol. 21, no. 1, pp. 28–65.

    Article  Google Scholar 

  4. Akinin, V.V., Layer, P., Benowitz, J., and Ntaflos, Th., Age and composition of final stage of volcanism in Okhotsk–Chukotka volcanic belt: an example from the Ola plateau (Okhotsk segment), Proceedings of the 6 th International Conference on Arctic Margins, Stone, D.B., Eds., St. Petersburg: VSEGEI, 2014, pp. 171–193.

  5. Akinin, V.V., Miller, E.L., Toro, J., et al., Episodicity and the dance of late Mesozoic magmatism and deformation along the northern circum-Pacific margin: north-eastern Russia to the Cordillera, Earth Sci. Rev., 2020, vol. 208. https://doi.org/10.1016/j.earscirev.2020.103272

  6. Ariskin, A.A. and Nielsen, R.L., Application of computer simulation of magmatic processes to the teaching of petrology, J. Geol. Educat., 1993, vol. 41, no. 5, pp. 438–441.

    Google Scholar 

  7. Ariskin, A.A., Barmina, G.S., Frenkel, M.Ya., and Yaroshevsky, A.A., Simulating low-pressure tholeiite-magma fractional crystallization, Geochem. Int., 1988, vol. 25, no. 4, pp. 21–37.

    Google Scholar 

  8. Baksi, A.K., Guidelines for assessing the reliability of 40Ar/39Ar plateau ages: application to ages relevant to hotspot tracks. 2006. http://www.mantleplumes.org/ArAr.html [accessed.

  9. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 1986, vol. 27, pp. 745–750.

  10. Belyi, V.F., Stratigrafiya i struktury Okhotsko-Chukotskogo vulkanogennogo poyasa (Stratigraphy and Structures of the Okhotsk–Chukotka Volcanogenic Belt), Moscow: Nauka, 1977.

  11. Black, L.P., Kamo, S.L., Allen, C.M., et al., Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; shrimp, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards, Chem. Geol., 2004, vol. 205, pp. 115–140.

    Article  Google Scholar 

  12. Condie, K., High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes? Lithos, 2005, vol. 79, pp. 491–504.

    Article  Google Scholar 

  13. DePaolo, D.J., Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization, Earth Planet, Sci. Lett., 1981, vol. 53, pp. 189–202.

    Article  Google Scholar 

  14. DePaolo, D.J., Neodymium Isotope Geochemistry: an Introduction, New York: Springer-Verlag, 1988.

    Book  Google Scholar 

  15. Emelyanova, T.A., Petrishchevsky, A.M., Izosov, L.A., et al., Late Mesozoic–Cenozoic stages of volcanism and geodynamics of the Sea of Japan and Sea of Okhotsk, Petrology, 2020, vol. 28, no. 5, pp. 418–430.

    Article  Google Scholar 

  16. Evensen, N.M., Hamilion, P.J., and O’Nions, R.K., Rare earth abundances in chondritic meteorites, Geochim. Cosmochim. Acta, 1978, vol. 42, pp. 1199–1212.

    Article  Google Scholar 

  17. Fedorov, P.I., Kainozoiskii vulkanizm v zonakh rastyazheniya na vostochnoi okraine Azii (Cenozoic Volcanism in the Extensional Zones on the Eastern Asian Margin), Moscow: GEOS, 2006.

  18. Fedorov, P.I. and Filatova, N.I., Geochemistry and petrology of Late Cretaceous and Cenozoic basalts from extensional zones at the continental margin of Northeastern Asia, Geohem. Int., 1999, vol. 37, no. 2, pp. 115-132.

    Google Scholar 

  19. Fedorov, P.I. and Smirnov, V.N., Early Cenozoic volcanism of the Kolyuchin–Mechigmen Graben, Chukotka Peninsula, Petrology, 2014, vol. 22, no. 1, pp. 54–64.

    Article  Google Scholar 

  20. Fedorov, P.I., Kovalenko, D.V., Bayanova, T.B., and Serov, P.A., Early Cenozoic magmatism in the continental margin of Kamchatka, Petrology, 2008, vol. 16, no. 3, pp. 261–278.

    Article  Google Scholar 

  21. Fedorov, P.I., Kovalenko, D.V., and Ageeva, O.A., Western Kamchatka–Koryak continental-margin volcanogenic belt: age, composition, and sources, Geochem. Int., 2011, vol. 49, no. 8, pp. 768–792.

    Article  Google Scholar 

  22. Fedorov, P.I., Moiseev, A.V., Palandzhyan, S.A., et al., The age and petrogenesis of felsic volcanics of the Algan Mountains, Koryak Highland, Northeast Russia, Russ. J. Pac. Geol., 2021, vol. 15, no. 2, pp. 85–101.

    Article  Google Scholar 

  23. Filatova, N.I., Periokeanicheskie vulkanogennye poyasa (Perioceanic Volcanogenic Belts), Moscow: Nauka, 1988.

  24. Filatova, N.I., Transform margin Maastrichtian–Paleogene magmatism in East Asia: the problem of “belts” in the Koryak–Western Kamchatka Region, Petrology, 2015, vol. 23, pp. 331–352.

    Article  Google Scholar 

  25. Fitton, J.G., Saunders, A.D., Norry, M.J., et al., Thermal and chemical structure of the Iceland plume, Earth Planet, Sci. Lett., 1997, vol. 153, pp. 197–208.

    Article  Google Scholar 

  26. Faure, G., Principles of Isotope Geology, New York: John Wiley and Sons, 1986.

    Google Scholar 

  27. Geologicheskaya karta SSSR. Masshtab 1 : 200 000. List R-57 XXIII. Ob"yasnitel’naya zapiska (Geological Map of the USSR. Scale 1 : 200 000. Sheet List R-57 XXIII. Explanatory Note), Gel’man, M.L, Eds., Moscow: Aerogeologiya, 1977.

  28. Geologicheskaya karta Severo-Vostoka SSSR. Masshtab 1 : 1 500 000 (Geological Map of the Northeast USSR. Scale 1 : 1 500 000), Gorodinskii, M.E., Eds., Leningrad: VSEGEI, 1980.

  29. Gosudarstvennaya geologicheskaya karta SSSR. Masshtab 1 : 200 000. Listy: R-57-VI; R-57-XI; R-57-XII. Ob"yasnitel’naya zapiska. (State Geological Map of the USSR. Scale 1 : 200 000. Sheets R-57-VI; R-57-XI; R-57-XII. Explanatory Note), Terekhov, M.I, Eds., Moscow: Soyuzgeolfond, 1989.

  30. Grebennikov, A.V. and Khanchuk, A.I., Geodynamics and magmatism Geodinamika i magmatizm transformnykh okrain Tikhookeanskogo tipa: osnovnye teoreticheskie aspekty i diskriminantnye diagrammy, Tikhookean. Geol., 2021, vol. 40, no. 1, pp. 3–24.

    Article  Google Scholar 

  31. Grebennikov, A.V., Khanchuk, A.I., Gonevchuk, V.G., and Kovalenko, S.V., Cretaceous and Paleogene granitoid suites of the Sikhote-Alin area (Far East Russia): geochemistry and tectonic implications, Lithos, 2016, vol. 261, pp. 250–261.

    Article  Google Scholar 

  32. Grinenko, O.V., Sergeenko, A.I., and Belolyubskii, I.N., Paleogen i neogen Severo-Vostoka Rossii. Chast’ I. Regional’naya stratigraficheskaya skhema paleogenovykh i neogenovykh otlozhenii Severo-Vostoka Rossii i Ob"yasnitel’naya zapiska k nei (Paleogene and Neogene of Northeastern Russia. Part 1: Regional Stratigraphic Scheme of Paleogene and Neogene Deposits of Northeastern Russia and Explanatory Note), Yakutsk: SO RAN, 1998.

  33. Hart, S.R., Heterogeneous mantle domains: signatures, genesis and mixing chronologies, Earth Planet, Sci. Lett., 1988, vol. 90, pp. 273–296.

    Article  Google Scholar 

  34. Herzberg, C. and Asimow, P.D., Primelt3 mega.xlsm software for primary magma calculation: peridotite primary magma Mgo contents from the liquidus to the solidus, Geochem. Geophys. Geosyst., 2015, vol. 16. https://doi.org/10.1002/2014GC005631

  35. Hofmann, A.W., Jochum, K.P., and Seufert, M., Nd and Pb in oceanic basalts: new constraints on mantle evolution, Earth Planet, Sci. Lett., 1986, vol. 79, pp. 33–45.

    Article  Google Scholar 

  36. Hourigan, J.K. and Akinin, V.V., Tectonic and chronostratigraphic implications of new 40Ar/39Ar geochronology and geochemistry of the Arman and Maltan-Ola volcanic fields, Okhotsk–Chukotka volcanic belt, northeastern Russia, Geol. Soc. Am. Bull., 2004, vol. 116, pp. 637–654.

    Article  Google Scholar 

  37. Irvine, T.N. and Baragar, W.R.A., A guide to the chemical classification on the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, p. 523.

    Article  Google Scholar 

  38. Kelemen, P.B., Hanghoj, K., and Greene, A.R., One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, Treatise on Geochemistry, Holland, H.D. and Turekian, K.K., Amsterdam: Elsevier, 2003.

    Google Scholar 

  39. Khanchuk, A.I. and Ivanov, V.V., Mesoc-Cenozoic geodynamic settings and gold mineralization of the Russian Far East, Geol. Geofiz. 1999, vol. 40, no. 11, pp. 1635–1645.

    Google Scholar 

  40. Khanchuk, A.I., Golozubov, V.V., Martynov, Yu.A., and Simanenko, V.P., Early Cretaceous and Paleogene transform margins (Californian type) of the Russian Far East, Tektonika Azii: Tez. 30th tektonicheskogo soveshchaniya (Tectonics of Asia. Proc. 30th Tectonic Conference), M.: GEOS, 1997, pp. 240–243.

  41. Leonova, V.V., Akinin, V.V., Al’shevskii, A.V., and Polzunenkov, G.O., New localities of Cenozoic alkali basalts with mantle xenoliths in northern Okhotsk Region (Seimkan Field), Russ. J. Pac. Geol., 2015, vol. 9, no. 4, pp. 287–300.

    Article  Google Scholar 

  42. Ludwig, K.R., User’s manual for Isoplot version 3.75-4.15: a geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center Spec. Publ., 2012, vol. 5, pp. 1–75.

    Google Scholar 

  43. Martynov, Yu.A., High-alumina basaltic volcanism of the eastern Sikhote Alin: petrology and geodynamics, Petrology, 1999, vol. 7, no. 1, pp. 53–72.

    Google Scholar 

  44. Martynov, Yu.A. and Khanchuk, A.I., Cenozoic volcanism of the Eastern Sikhote Alin: petrological studies and outlooks, Petrology, 2013, vol. 21, no. 1, pp. 85–100.

    Article  Google Scholar 

  45. Miller, D.M., Goldstein, S.L., and Langmuir, C.H., Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents, Nature, 1994, vol. 368, pp. 514–520.

    Article  Google Scholar 

  46. Miyashiro, A., Volcanic rock series in island arc and active continental margin, Am. J. Sci., 1974, vol. 274, no. 3, pp. 321–355.

    Article  Google Scholar 

  47. Polin, V.F., On Cenozoic volcanism of the northern Okhotsk region, Tikhookean Geol., 2019, vol. 38, no. 5, pp. 105–118.

    Article  Google Scholar 

  48. Polin, V.F., Sakhno, V.G., Maksimov, S.O., and Sandimirov, I.V., Isotope geochemistry and deep sources of subalkaline and alkaline rocks from the Paleogene contrasting series of the Amguema–Kanchalan volcanic field, Okhotsk–Chukotka volcanic field, Dokl. Earth Sci., 2009, vol. 429, no. 2, pp. 1288–1294.

    Article  Google Scholar 

  49. Politov, V.K., Geologicheskaya karta SSSR masshtaba 1 : 200 000. List P-57-XVI (ob"yasnitel’naya zapiska) (Geological Map of the USSR on a Scale 1 : 200 000. Sheet P-57-XVI. (Explanatory Note)), Magadan: MG SSSR, 1981. 101 s.

  50. Putirka, K.D., Thermometers and barometers for volcanic systems: minerals, inclusions and volcanic processes, Rev. Mineral. Geochem., 2008, vol. 69, pp. 61–120.

    Article  Google Scholar 

  51. Rasskazov, S.V., Chuvashova, I.S., Yasnygina, T.A., et al., Kalievaya i kalinatrovaya vulkanicheskie serii v kainozoe Azii (Cenozoic Potassic and Sodic Volcanic Series of Asia), Novosibirsk: Akademicheskoe izd-vo “GEO”, 2012. 351 s.

  52. Rudnick, R. and Gao, S., Composition of the Continental Crust, Treatise on Geochemistry, Hollan, D.D. and Turekian, K.K., Eds., Oxford: Elsevier-Pergamon, 2003, vol. 3.

    Google Scholar 

  53. Smirnov, V.N., Fedorov, P.I., and Bogomolov, E.S., New data on the age and composition of cenozoic andesibasalts and andesites of the Bolshaya Garmanda River (North Okhotsk Region), Russ. J. Pac. Geol., 2018, vol. 12, no. 6, pp. 511–520.

    Article  Google Scholar 

  54. Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Ocean Basins, Saunders, A.D, and Norry, M.J. Eds., Geol. Soc, Spec. Publ., 1989, vol. 42, pp. 313–345.

    Article  Google Scholar 

  55. Travin, A.V., Yudin, D.S., Vladimirov, A.G., et al., Thermochronology of the Chernorud Granulite Zone, Ol’khon Region, western Baikal Area, Geohem. Int., 2009, vol. 47, no. 11, pp. 1107–1124.

    Google Scholar 

  56. Tschegg, C., Ntaflos, T., and Akinin, V., Polybaric petrogenesis of neogene alkaline magmas in an extensional tectonic environment: Viliga Volcanic Field, northeast Russia, Lithos, 2011, vol. 122, pp. 13–24.

    Article  Google Scholar 

  57. Varnavskii, V.G. and Malyshev, Yu.F., East Asian graben belt, Tikhookean. Geol., 1986, no. 3, pp. 3–13.

  58. Di Vincenzo, G. and Rocchi, S., Origin and interaction of mafic and felsic magmas in an evolving late orogenic setting: the Early Paleozoic Terra Nova intrusive complex, Antarctica, Contrib. Mineral. Petrol., 1999, vol. 137, pp. 15–35.

    Article  Google Scholar 

  59. Wang, H., Wu, Y-B., Qin, Z-W., et al., Age and geochemistry of Silurian gabbroic rocks in the Tongbai Orogen, Central China: implications for the geodynamic evolution of the north Qinling arc–back-arc system, Lithos, 2013, vol. 179, pp. 1–15.

    Article  Google Scholar 

  60. Williams, I.S., U-Th-Pb geochronology by ion microprobe: applications of microanalytical techniques to understanding mineralizing processes, Rev. Econ. Geol., 1998, vol. 7, pp. 1–35.

    Google Scholar 

  61. Wilson, M., Igneous Petrogenesis: a Global Tectonic Approach, Rotterdam: Springer, 2007.

    Google Scholar 

  62. Zhulanova, I.L., Zemnaya kora Severo-Vostoka Azii v dokembrii i fanerozoe (Earth’s Crust of Northeast Asia in the Precambrian and Phanerozoic), Moscow: Nauka, 1990.

  63. Zindler, A. and Hart, S., Chemical geodynamics, Ann. Rev. Earth Planet. Sci., 1986, vol. 14, pp. 493–571.

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank Yu.A. Martynov and A.V. Koloskov for constructive criticism.

Funding

The geochemical study was carried out under government-financed research project no. 2 for Northeast Interdisciplinary Scientific Research Institute, Far East Branch, Russian Academy of Sciences, in Magadan, and research project no. 0135-2019-0078 for the Geological Institute, Russian Academy of Sciences, in Moscow. The isotopic–geochemical research was supported by the Russian Science Foundation, project no. 20-17-00169.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. V. Akinin or P. I. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akinin, V.V., Smirnov, V.N., Fedorov, P.I. et al. Paleogene Volcanism in the Northern Okhotsk Region. Petrology 30, 40–59 (2022). https://doi.org/10.1134/S0869591122010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591122010039

Keywords:

Navigation