Skip to main content

Differentiated Mafic–Ultramafic Intrusions of the Zubovsky Type in the Norilsk Area: Petrochemistry, Geochemistry, and Ore Potential

Abstract

Intrusions of the Zubovsky type (1) are commonly dominated by troctolite in their ultramafic parts and have an insignificant number (if any) of ultramafic units; (2) occur among olivine and olivine-bearing gabbro-dolerites and often show evidence of a number of accumulation of cumulus olivine, (3) have weakly pronounced (if any) taxitic gabbrodolerite units; (4) include widespread leucocratic hybrid-metasomatic rocks and hybrid quartz- and cordierite-bearing norites and gabbronorites at contacts with the host aluminosilicate rocks; and (5) generally have a low ore content, with the prevalence of disseminated ore units among troctolites and ultramafic rocks, and almost complete absence of massive sulfide ores. The paper is the first to present data on the composition and Nd–Sr–Cu–S isotope-geochemical characteristics of rocks and sulfide ores from the Zubovsky-type intrusions in the Norilsk area. The silicate material of the Zub-Marksheider and Vologochan intrusions is characterized by similar Nd–Sr isotopic parameters: εNd = –1.2 ± 0.5, (87Sr/86Sri) = 0.70685 ± 0.00127, and εNd = 1.2 ± 0.8, (87Sr/86Sri) = 0.70634 ± 0.00068, respectively. These parameters are close to those of intrusions accompanied by economic ore mineralization in the Norilsk area. The whole-rock samples generally have a more ‘radiogenic’ Nd isotopic composition than that of the pyroxene and plagioclase and less ‘radiogenic’ than that of the olivine. The highest εNd value (ca. 5.3) of the olivine indicates that depleted mantle (DM) material was involved in the magma-generating processes. Copper–sulfur isotope data for sulfide ores of the Zub-Marksheider and Vologochan intrusions are remarkably different: δ34S = 1.3 ± 2.3‰, δ65Cu = –0.1 ± 0.15‰ and δ34S = 7.0 ± 1.2‰, δ65Cu = –0.7 ± 0.3‰, respectively. The Cu isotope composition of the sulfide mineralization of both intrusions is close to that of massive and disseminated sulfide ores from the Talnakh deposit in the Norilsk area. The sulfur isotope data suggest that the host rocks had little effect on sulfide mineralization. The identified Nd–Sr–S–Cu isotope-geochemical parameters of the rocks and ores are an important indicator of the potential for rich PGE–Cu–Ni sulfide ores.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Notes

  1. The compositions of the rock-forming minerals are presented in tables in the on-line Russian and English versions of the journal, which are available for authorized readers at https://elibrary.ru/ and http://link.springer.com/, respectively. (Suppl. 1). See Suppl. 1 ESM_1.pdf for the Zub-Marksheider intrusion

  2. See (Suppl. 2), ESM_2.pdf for the Verkhneambarninsky intrusion

  3. The compositions of the rock-forming minerals are presented in tables in the on-line Russian and English versions of the journal, which are available for authorized readers at https://elibrary.ru/ and http://link.springer.com/, respectively. (Suppl. 3), ESM_3.pdf for the Vologochan intrusion.

  4. The compositions of the rock-forming minerals are presented in tables in the on-line Russian and English versions of the journal, which are available for authorized readers at https://elibrary.ru/ and http://link.springer.com/, respectively. (Suppl. 4), ESM_4.pdf for the South Pyasino intrusion.

  5. The composition of rocks and ore oxides in intrusions of the Zubovsky type are presented in tables to the Russian and English versions of the journal available for authorized readers at https://elibrary.ru/ and http://link.springer.com/, respectively. See (Suppl. 5), ESM_5.pdf for the composition of the ore oxides in rocks of the Zubovsky-type intrusions.

  6. See (Suppl. 6), ESM_6.pdf for the composition (wt %) of rocks of the Zubovsky-type intrusions.

  7. For the Zubovsky-type intrusions, Tables to the Russian and English versions of the journal are available for authorized readers at https://elibrary.ru/ and http://link.springer.com/, respectively. See (Suppl. 7), ESM_7.pdf for concentrations of base metals and PGE in rocks of the Zubovsky-type intrusions.

  8. See (Suppl. 8), ESM_8.pdf for the composition of sulfides in intrusions of the Zubovsky type.

REFERENCES

  1. Arndt, N.T., Czamanske, G.K., Walker, R.J., et al., Geochemistry and origin of the intrusive hosts of the Noril’sk–Talnakh Cu–Ni–PGE sulfide deposits, Econ. Geol., 2003, vol. 98, pp. 495–515.

    Google Scholar 

  2. Asael, D., Matthews, A., Butler, I., et al., 65Cu/63Cu fractionation during copper sulphide formation from iron sulphides in aqueous solution, Geochim. Cosmochim. Acta, 2006, vol. 70, no. (18. Asael, D., Matthews, A., Bar-Matthews, M., and Halicz, L., Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel), Chem. Geol., 2007, vol. 243, pp. 238–254.

    Google Scholar 

  3. Balashov, Yu.A., Izotopno-geokhimicheskaya evolyutsiya mantii i kory Zemli (Isotope-Geochemical Evolution of The Earth’s Mantle and Crust), Moscow: Nauka, 1985.

    Google Scholar 

  4. Bermin, J., Vance, D., Archer, C., and Statham, P.J., The determination of the isotopic composition of cu and zn in seawater, Chem. Geol., 2006, vol. 226, nos 3–4, pp. 280–297.

    Google Scholar 

  5. Bychkova, Ya.V., Sinitsyn, M.Yu., Petrenko, D.B., et al., Method peculiarities of multielemental analysis of rocks with inductively-coupled plasma mass spectrometry, Moscow Univ. Geol. Bull., 2017, vol. 72, no. 1, pp. 56–62.

    Google Scholar 

  6. Chaussidon, M., Albarede, F.L., and Sheppard, S.M.F., Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamond, Nature, 1987, vol. 330, pp. 242–244.

    Google Scholar 

  7. Chaussidon, M., Albarede, F.L., and Sheppard, S.M.F., Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions, Earth Planet. Sci. Lett., 1989, vol. 92, pp. 144–156.

    Google Scholar 

  8. Chernova, N.A., Differentiated trap intrusion of Mt. Zub, Norilsk District, Geol. Geofiz., 1961, no. 5, pp. 65–72.

  9. Czamanske, G.K., Wooden, J.L., Zientek, M.L., et al., Geochemical and isotopic constraints on the petrogenesis of the Noril’sk–Talnakh ore-forming system, Proceedings of the Sudbury–Noril’sk Symposium, Lightfoot, P.C. and Naldrett, A.J. Spec. Publ. Geol. Surv. Ontario, 1994, vol. 5, pp. 313–342.

  10. Distler, V.V., Grokhovskaya, T.L., Evstigneeva, T.L., et al., Petrologiya sul’fidnogo magmaticheskogo rudoobrazovaniya (Petrology of Sulfide Magmatic Ore Formation), Moscow: Nauka, 1988.

  11. Dobretsov, N.L., Kirdyashkin, A.A., Kirdyashkin, A.G., et al., Modelling of thermochemical plumes and implication for the origin of the Siberian traps, Lithos, 2008, vol. 100, pp. 66–92.

    Google Scholar 

  12. Dodin, D.A., Chernyshev, N.M., and Cherednikova, O.I., Metalogeniya platinoidov krupnykh regionov Rossii (PGE Metallogeny of Large Regions of Russia), Moscow: ZAO “Geoinformmark”, 2001. 302 c.

    Google Scholar 

  13. Dyuzhikov, O.A., Distler, V.V., Strunin B.M., et al., Geologiya i rudonosnost' Noril’skogo raiona (Geology and Ore Potential of the Norilsk District), Moscow: Nedra. 1988.

    Google Scholar 

  14. Eldridge, C.S., Compston, W., Williams, I.S., et al., Isotopic evidence for the involvement of recycled sediments in diamond formation, Nature, 1991, vol. 353, pp. 649–653.

    Google Scholar 

  15. Ernst, R.E. and Buchan, K.L., Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces, J. Geodynamics, 2002, vol. 34, pp. 309–342.

    Google Scholar 

  16. Faure, G., Principles of Isotope Geology, New York: Wiley, 1986.

    Google Scholar 

  17. Godlevsky, M.N., Trappy i rudonosnye intruzii Noril’skogo raiona (Traps and Ore-Bearing Intrusions of the Norilsk District), Moscow: Gostekhmetizdat, 1959.

  18. Godlevsky, M.N. and Grinenko, L.N., Some data on the sulfur isotope composition of the Norilsk deposit, Geokhimiya, 1963, no. 1, pp. 35–39.

  19. Godlevsky, M.N. and Likhachev, A.P., Types and distinctive features of ore-bearing formations of copper–nickel deposits, Geology and Metallogeny of Copper Deposits, Friedrich, G.H., Genkin, A.D., naldrett, A.J. et al., Berlin: Springer-Verlag, 1986.

    Google Scholar 

  20. Goverdovskaya, T.G., New data on the morphology of the Zubovskaya differentiated intrusion, Geologiya i poleznye iskopaemye Noril’skogo raiona. Materialy II Noril’skoi geologicheskoi konferentsii (Geology and Mineral Resources of the Norilsk District. Proceedings of 2nd Norilsk Geological Conference), Noril’sk, 1971a, pp. 85–87.

  21. Goverdovskaya, T.G., Pyasino-Vologochaskaya differentiated intrusion, Geologiya i poleznye iskopaemye Noril’skogo raiona. Materialy II Noril’skoi geologicheskoi konferentsii (Geology and Mineral Resources of the Norilsk District. Proceedings of 2nd Norilsk Geological Conference), Noril’sk, 1971b, pp. 84–85.

  22. Graham, S., Pearson, N., Jackson, S., et al., Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit, Chem. Geol., 2004, vol. 207, pp. 147–169.

    Google Scholar 

  23. Grinenko, L.N., Sulfur isotope composition of sulfides from the Talnakh copper–nickel deposit in relation with its genesis, Geol. Rudn. Mestorozhd., 1966, vol. 8, no. 4, pp. 15–30.

    Google Scholar 

  24. Grinenko, L.N., H2S-bearing gaseous reservoirs as sulfur source during sulfarization of magmas of the economic ore-bearing intrusions of the Norilsk district, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 3, pp. 730–732.

    Google Scholar 

  25. Grinenko, L.N., Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian Platform, Int. Geol. Rev., 1985, vol. 28, pp. 695–708.

    Google Scholar 

  26. Grinenko, L.N., Sources and conditions of formation of sulfide copper–nickel ores: isotope-geochemical data, Geologiya medno-nikelevykh mestorozhdenii SSSR (Geology of Copper–Nickel Deposits of the USSR), Leningrad: Nauka, 1990, pp. 57–66.

    Google Scholar 

  27. Grinenko, L.N. and Stepanov, V.K., Isotope relations and sulfur contents in the differentiated intrusions of the Imangda ore cluster, Geokhimiya, 1985, no. 1, pp. 1406–1416.

  28. Hawkesworth, C.J., Lightfoot, P.C., Fedorenko, V.A., et al., Magma differentiation and mineralisation in the Siberian flood basalts, Lithos, 1995, vol. 34, pp. 61–88.

    Google Scholar 

  29. Horan, M.F., Walker, R.J., Fedorenko, V.A., and Czamanske, G.K., Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalts sources, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 5159–5168.

    Google Scholar 

  30. Iacono-Marziano, G., Ferraina, C., Gaillard, F., et al., Assimilation of sulfate and carbonaceous rocks: experimental study, thermodynamic modeling and application to the Noril’sk–Talnakh region (Russia), Ore Geol. Rev., 2017, vol. 89, pp. 399–413.

    Google Scholar 

  31. Izotopnaya geologiya Noril’skikh mestorozhdenii (Isotope Geology of the Norilsk Deposits), St. Petersburg: VSEGEI, 2017.

  32. Keays, R.R. and Lightfoot, P.C., Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan trap basalts, Miner. Deposita, 2010, vol. 45, pp. 241–257.

    Google Scholar 

  33. Kogarko, L.N., Karpenko, S.F., Lyalikov, A.V., and Teptelev, M.P., Isotope criteria for genesis of meimechite magamtism, Dokl. Akad. Nauk SSSR, 1988, vol. 301, no. 4, pp. 939–942.

    Google Scholar 

  34. Korovyakov, I.A., Nelyubin, L.E., Raikova, Z.A., and Khortova, L.K., Proiskhozhdenie noril’skikh trappovykh intruzii, nesushchikh sul’fidnye medno-nikelevye rudy (Origin of the Norilsk Trap Intrusion Bearing Sulfide Copper–Nickel Ores), Moscow: Gosgeoltekhizdat, 1963.

  35. Krivolutskaya, N.A., Mantle origin of heavy isotopes of sulfur in ores of the Noril’sk deposits, Dokl. Earth Sci., 2014a, vol. 454, no. 1, pp. 76–78.

    Google Scholar 

  36. Krivolutskaya, N.A., Evolyutsiya trappovogo magmatizma i Pt-Cu-Ni rudoobrazovanie v Noril’skom raione (Evolution of Trap Magmatism and Pt–Cu–Ni Ore Formation in the Norilsk District), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2014b.

  37. Krivolutskaya, N.A., Siberian Traps and Pt–Cu–Ni Deposits in the Noril’sk Area, Springer International Publishing, 2016.

    Google Scholar 

  38. Krivolutskaya, N.A., Ariskin, A.A., Sluzhenikin, S.F., and Turovtsev, D.M., Geochemical thermometry of rocks of the Talnakh Intrusion: assessment of the melt composition and the crystallinity of the parental magma, Petrology, 2001, vol. 9, no. 5, pp. 389–414.

    Google Scholar 

  39. Krivolutskaya, N.A., Sobolev, A.V., Snisar, S.G., et al., Mineralogy, geochemistry and stratigraphy of the Maslovsky Pt–Cu–Ni sulfide deposit, Noril’sk region, Russia: implications for relationship of ore-bearing intrusions and lavas, Miner. Deposita, 2012, vol. 47, pp. 69–88.

    Google Scholar 

  40. Kuz’min, V.K. and Tuganova, E.V., New data on sulfur isotope composition of the copper–nickel ores of the northwestern Siberian Platform, Geol. Geofiz., 1977, no. 4, pp. 122–125.

  41. Larson, P.B., Maher, K., Ramos, F.C., et al., Copper isotope ratios in magmatic and hydrothermal ore-forming environments, Chem. Geol., 2003, vol. 201, nos. 3–4, pp. 337–350.

    Google Scholar 

  42. Li, C., Ripley, E.M., and Naldrett, A.J., Compositional variations of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia: implications for ore-forming processes in dynamic magma conduits, Econ. Geol., 2003, vol. 98, pp. 69–86.

    Google Scholar 

  43. Li, C., Ripley, E.M., and Naldrett, A.J., A new genetic model for the giant Ni–Cu–PGE sulfide deposits associated with the Siberian flood basalts, Econ. Geol., 2009a, vol. 104, no. 2, pp. 291–301.

    Google Scholar 

  44. Li, W.-Q., Jackson, S.E., Pearson, N.J., et al., The cu isotopic signature of granites from the Lachlan fold belt, SE Australia, Chem. Geol., 2009b, vol. 258, pp. 38–49.

    Google Scholar 

  45. Lightfoot, P.C., Hawkesworth, C.J., and Hergt, J., Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk district, Siberian trap, Russia, Contrib. Mineral. Petrol., 1993, vol. 114, pp. 171–188.

    Google Scholar 

  46. Lightfoot, P.C. and Keays, R.R., Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk Region: implications for the origin of the Ni–Cu–PGE sulfide ores, Econ. Geol., 2005, vol. 100, pp. 439–462.

    Google Scholar 

  47. Likhachev, A.P., Trap magmatism and Pt–Cu–Ni deposits in the Norilsk district, Otechestvennaya Geol., 1997, no. 10, pp. 8–19.

  48. Likhachev, A.P. Platinoidno-medno-nikelevye i platinovye mestorozhdeniya (Platinum-copper-nickel and platinum deposits), Moscow: Eslan, 2006 (in Russian).

  49. Luck, J.-M., Ben Othman, D., Barrat, J.A., and Albarede, F., Coupled 63Cu and 16O excesses in chondrites, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 143–151.

    Google Scholar 

  50. Luck, J.-M., Ben Othman, D., and Albarede, F., Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 5351–5363.

    Google Scholar 

  51. Maher, K.C. and Larson, P.B., Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru, Econ. Geol., 2007, vol. 102, pp. 225–237.

    Google Scholar 

  52. Malitch, K.N., Belousova, E.A., Griffin, W.L., et al., Magmatic evolution of the ultramafic-mafic Kharaelakh intrusion (Siberian Craton, Russia): insights from trace-element, U-Pb and Hf-isotope data on zircon, Contrib. Mineral. Petrol., 2010, vol. 159, no. 6, pp. 753–768.

    Google Scholar 

  53. Malitch, K.N. and Latypov, R.M., Re-Os and S-isotope constraints on timing and source heterogeneity of PGE–Cu–Ni sulfide ores: a case study at the Talnakh ore junction (Russia), Can. Mineral., 2011, vol. 49, no. 6, pp. 1653–1677.

    Google Scholar 

  54. Malitch, K.N., Belousova, E.A., Griffin, W.L., and Badanina, I.Yu., Hafnium-neodymium constraints on source heterogeneity of the economic ultramafic-mafic Noril’sk-I intrusion (Russia), Lithos, 2013, vol. 164–167, pp. 36–46.

    Google Scholar 

  55. Malitch, K.N., Latypov, R.M., Badanina, I.Yu., and Sluzhenikin, S.F., Insights into ore genesis of Ni–Cu–PGE sulfide deposits of the Noril’sk province (Russia): evidence from copper and sulfur isotopes, Lithos, 2014, vol. 204, pp. 172–187.

    Google Scholar 

  56. Malitch, K.N., Badanina, I.Yu., Tuganova, E.V., Rudonosnye ul’tramafit-mafitovye intruzivy Polyarnoi Sibiri: vozrast, usloviya obrazovaniya, kriterii prognoza (Ore-bearing Ultramafic–Mafic Intrusions of the Polar Siberia: Age, Origin, and Prediction Criteria), Yekaterinburg: IGG UrO RAN, 2018a.

  57. Malitch, K.N., Stepashko, A.A., Badanina, I.Yu., and Sluzhenikin, S.F., Petrochemical and geochemical heterogeneity of the Noril’sk-1 economic ultramafic–mafic intrusion, Russia, Tr. Inst. Geol. Geokhim. Ural Otd. Ross. Akad. Nau, 2018b, vol. 165, pp. 123–130 (in Russian).

    Google Scholar 

  58. Malitch, K.N., Belousova, E.A., Griffin, W.L., et al., New insights on the origin of ultramafic-mafic intrusions and associated Ni–Cu–PGE sulfide deposits of the Noril’sk and Taimyr provinces, Russia: evidence from radiogenic- and stable-isotope data, Processes and Ore Deposits of Ultramafic-Mafic Magmas Through Space and Time Mondal, S. and Griffin, W.L., Eds., Elsevier, 2018c, pp. 197–238.

  59. Marechal, C. and Albarede, F., Ion-exchange fractionation of copper and zinc isotopes, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 1499–1509.

    Google Scholar 

  60. Markl, G., Lahaye, Y., and Schwinn, G., Copper isotopes asmonitors of redox processes in hydrothermal mineralization, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 4215–4228.

    Google Scholar 

  61. Mason, T.F.D., Weiss, D.J., Chapman, J.B., et al., Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia, Chem. Geol., 2005, vol. 221, pp. 170–187.

    Google Scholar 

  62. Mathur, R., Ruiz, J., Titley, S., et al., Cu isotopic fractionation in the supergene environment with and without bacteria, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 22, pp. 5233–5246.

    Google Scholar 

  63. Mathur, R., Titley, S., Barra, F., et al., Exploration potential of Cu isotope fractionation in porphyry copper deposits, J. Geochem. Explor., 2009, vol. 102, no. 1, pp. 1–6.

    Google Scholar 

  64. Mathur, R., Ruiz, J., Casselman, M.J., et al., Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Canariaco Norte porphyry copper deposit, northern Peru, Miner. Deposita, 2012, vol. 47, pp. 755–762.

    Google Scholar 

  65. McBirney, A.R. and Noyes, R.M., Crystallization and layering of the Skaergaard intrusion, J. Petrol., 1979, vol. 20, pp. 487–554.

    Google Scholar 

  66. Ben Othman, D., Luck, J.M., Bodinier, J.L., et al., Cu-Zn isotopic variations in the Earth’s mantle, Geochim. Cosmochim. Acta, 2006, vol. 70, (18 suppl. 1), A46

  67. Petrov, O.V., Malitch, K.N., Tuganova, E.V., et al., Test-methodical investigations on elaborating isotope-geochemical criteria for prospecting platinum-group metals, gold, copper, nickel, an cobalt in the layered intrusions of the northern Central Siberia, Krasnoyarsk Krai, Izv. VSEGEI, 2009, vol. 8, pp. 248–262.

    Google Scholar 

  68. Pin, C., Joannon, S., Bosq, Ch., et al., Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following separation of the analytes, J. Analyt. Atom. Spectrom., 2003, vol. 18, pp. 135–141.

    Google Scholar 

  69. Pokrovskii, B.G., Sluzhenikin, S.F., Krivolutskaya N.A. Interaction conditions of Noril’sk Trap intrusions with their host rocks: isotopic (O, H, and C) evidence, Petrology, 2005, vol. 13, no. 1, pp. 49–72.

    Google Scholar 

  70. Prasolov, E.M., Sergeev, S.A., Belyatsky, B.V., et al., Isotopic systematics of He, Ar, S, Cu, Ni, Re, Os, Pb, U, Sm, Nd, Rb, Sr, Lu, and Hf in the rocks and ores of the Norilsk Deposits, Geochem. Int., 2018, vol. 56, no. 1, pp. 46–64.

    Google Scholar 

  71. Pushkarev, Yu.D., Two interaction modes of crustal and mantle materials and a new approach to problems of deep ore formation, Dokl. Earth Sci., 1997, vol. 335, no. 4, pp. 881–883.

    Google Scholar 

  72. Reichow, M.K., Pringle, M.S., Al’mukhamedov, A.I., et al., The timing and extent of the eruption of the Siberian traps large igneous province: implications for the end-permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 9–20.

    Google Scholar 

  73. Richard, P., Shimizu, N., and Allegre, C.J., 143Nd/146Nd a natural tracer: an application to oceanic basalts, Earth Planet. Sci. Lett., 1976, vol. 31, pp. 269–278.

    Google Scholar 

  74. Ripley, E.M. and Li, C., Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu–Ni–PGE deposits, Econ. Geol., 2003, vol. 98, pp. 635–641.

    Google Scholar 

  75. Ripley, E.M. and Li, C., Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni–Cu–PGE ore genesis?, Econ. Geol., 2013, vol. 108, pp. 45–58.

    Google Scholar 

  76. Ripley, E.M., Lightfoot, P.C., Li, C., and Elswick, E.R., Sulfur isotopic studies of continental flood basalts in the Noril’sk region: implications for the association between lavas and ore-bearing intrusions, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 2805–2817.

    Google Scholar 

  77. Ripley, E.M., Li, C., Moore, C.H., and Schmitt, A.K., Micro-scale s isotope studies of the Kharaelakh intrusion, Noril’sk region, Siberia: constraints on the genesis of coexisting anhydrite and sulfide minerals, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 634–644.

    Google Scholar 

  78. Ripley, E.M., Dong, S., Li, C., and Wasylenki, L.E., Cu isotope variations between conduit and sheet-style Ni–Cu–(PGE) sulfide mineralization in the midcontinent rift system, North America, Chem. Geol., 2015, vol. 414, pp. 59–68.

    Google Scholar 

  79. Rouxel, O., Fouquet, Y., and Ludden, J.N., Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev seafloor hydrothermal fields on the mid-atlantic ridge, Econ. Geol., 2004, vol. 99, pp. 585–600.

    Google Scholar 

  80. Ryabov, V.V., Olivin sibirskikh trappov kak pokazatel' petrogenezisa i rudoobrazovaniya (Olivine of the Siberian Traps as Indicator of Petrogenesis and Ore Formation), Novosibirsk: Nauka, 1992.

  81. Ryabov, V.V., Shevko, A.Ya., and Gora, M.P., Magmaticheskie porody Noril’skogo raiona. T. 1. Petrologiya trappov (Magmatic Rocks of the Norilsk District. Volume 1. Petrology of Traps), Novosibirsk: Nonparel’, 2000.

  82. Sluzhenikin, S.F., Krivolutskaya, N.A., Rad’ko, V.A., et al., Ultramafic-mafic intrusions, volcanic rocks and PGE–Cu–Ni sulfide deposits of the Noril’sk Province, Polar Siberia. Field Trip Guidebook. 12th International Platinum Symposium, Simonov, O.N., Ed., Yekaterinburg: IGG UB RAS, 2014.

  83. Sluzhenikin, S.F. and Krivolutskaya, N.A., “Pyasino–Vologochan intrusion: geological structure and platinum–copper–nickel ores (Norilsk Region),” Geol. Ore Deposits, 2015, vol. 57, no. 5, pp. 381–402.

    Google Scholar 

  84. Sluzhenikin S.F., Malitch K.N., Grigor’eva A.V. Differentiated mafic–ultramafic intrusions of the Kruglogorsky type in the Noril’sk area: petrology and ore potential, Petrology, 2018, vol. 26, no. 3, pp. 280–313.

    Google Scholar 

  85. Starostin, V.I. and Sorokhtin, O.G., A new assessment of the Noril’sk-type deposits origin, Moscow Univ. Geol. Bull., 2011, vol. 66, no. 2, pp. 73–83.

    Google Scholar 

  86. Tuganova, E.V., Formatsionnye tipy, genezis i zakonomernosti razmeshcheniya sul’fidnykh platinoidno-medno-nikelevykh mestorozhdenii (Formation Type, Genesis, and Distribution of Sulfide Platinoid–Copper–Nickel Deposits), St. Petersburg: VSEGEI, 2000.

  87. Tuganova, E.V. and Shergina, Yu.P., Isotope-geochemical discontinuity of rocks of the ore-bearing intrusions of the Talnakh–Norilsk type and genetic implications, Regional. Geol. Metallogen., 2003, no. 17, pp. 140–146.

  88. Tuganova, E.V. and Shergina, Yu.P., Isotope-geochemical peculiarities of the Norilsk-type intrusions, Nedra Taimyra, 1997, vol. 2, pp. 114–122.

    Google Scholar 

  89. Turovtsev, D.M., Kontaktovyi metamorfizm Noril’skikh intruzii (Contact Metamorphism of the Norilsk Intrusions), Moscow: Nauchnyi mir, 2002.

  90. Vinogradov, A.P. and Grinenko, L.N., Sulfur isotope composition of the copper–nickel deposits and occurrences of the Norilsk district in relation with problems of their genesis, Geokhimiya, 1966, no. 1, pp. 3–14.

  91. Walker, R.J., Morgan, J.W., Horan, M.F., et al., Re-Os isotopic evidence for an enriched-mantle source for the Noril’sk-type ore-bearing intrusions, Siberia, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 4179–4197.

    Google Scholar 

  92. Wasson, J.T. and Kallemeyn, G.W., Composition of chondrites, Philos. Trans. R. Soc., 1988, vol. 325, no. 1587, pp. 535–544.

    Google Scholar 

  93. Wooden, J.L., Czamanske, G.K., Bouse, R.M., et al., Pb isotope data indicate a complex mantle origin for the Norilsk–Talnakh ores, Siberia, Econ. Geol., 1992, vol. 87, pp. 1153–1165.

    Google Scholar 

  94. Wu, L.-Y., Hu, R.-Z., Li, X.-F., et al., Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu–Au deposit, South China: implications for deposit origin, Ore Geol. Rev., 2017, vol. 83, pp. 191–199.

    Google Scholar 

  95. Yang, J.-H., Wu, F.-Y., Chung, S.-L., et al., A hybrid origin for the Qianshan A-type granite, northeast china: geochemical and Sr–Nd–Hf isotopic evidence, Lithos, 2006, vol. 89, pp. 89–106.

    Google Scholar 

  96. Zhao, Y., Xue, C., Liu, S.-A., et al., Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China, Lithos, 2017, vol. 286-287, pp. 206–215.

    Google Scholar 

  97. Zhu, X.K., O’Nions, R.K., Guo, Y., et al., Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers, Chem. Geol., 2000, vol. 163, pp. 139–149.

    Google Scholar 

  98. Zhu, X.K., Guo, Y., Williams, R.J.P., et al., Mass fractionation processes of transition metal isotopes, Earth Planet. Sci. Lett., 2002, vol. 200, pp. 47–62.

    Google Scholar 

  99. Zolotukhin, V.V., Ryabov V.V., Vasil’ev, Yu.R., and Shatkov, V.V., Petrologiya Talnakhskoi rudonosnoi differentsirovannoi trappovoi intruzii (Petrology of the Talnakh Ore-Bearing Differentiated Trap Intrusion), Novosibirsk: Nauka, 1975.

Download references

ACKNOWLEDGMENTS

The authors thank S.E. Borisovskii, T.I. Golovanova, A.I. Yakushev, and E.O. Dubinina, colleagues at the Norilskgeologia Ltd., Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, and the Karpinsky Russian Geological Research Institute (VSEGEI), for assistance during various stages of this research. We thank the reviewers R.M. Latypov and E.V. Sharkov for constructive criticism, which helped us to improve this manuscript.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-05-70073, “Resources of the Arctic”, and Government-financed research project no. AAAA-A18-118052590026-5 of the Zavaritsky Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences. The isotope analysis was partly supported by the Territorial Agency of Natural Resources of the Krasnoyarsk Territory, state contract 7F-TAO/2005.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. F. Sluzhenikin, K. N. Malitch, A. V. Grigorieva or I. Yu. Badanina.

Additional information

Translated by E. Kurdyukov

Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sluzhenikin, S.F., Malitch, K.N., Turovtsev, D.M. et al. Differentiated Mafic–Ultramafic Intrusions of the Zubovsky Type in the Norilsk Area: Petrochemistry, Geochemistry, and Ore Potential. Petrology 28, 458–489 (2020). https://doi.org/10.1134/S0869591120040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120040074

Keywords:

  • Norilsk area
  • Zubovsky-type intrusions
  • Nd–Sr isotope data
  • sulfide ores
  • S–Cu isotope data
  • material sources
  • origin