Arndt, N.T., Czamanske, G.K., Walker, R.J., et al., Geochemistry and origin of the intrusive hosts of the Noril’sk–Talnakh Cu–Ni–PGE sulfide deposits, Econ. Geol., 2003, vol. 98, pp. 495–515.
Google Scholar
Asael, D., Matthews, A., Butler, I., et al., 65Cu/63Cu fractionation during copper sulphide formation from iron sulphides in aqueous solution, Geochim. Cosmochim. Acta, 2006, vol. 70, no. (18. Asael, D., Matthews, A., Bar-Matthews, M., and Halicz, L., Copper isotope fractionation in sedimentary copper mineralization (Timna Valley, Israel), Chem. Geol., 2007, vol. 243, pp. 238–254.
Google Scholar
Balashov, Yu.A., Izotopno-geokhimicheskaya evolyutsiya mantii i kory Zemli (Isotope-Geochemical Evolution of The Earth’s Mantle and Crust), Moscow: Nauka, 1985.
Google Scholar
Bermin, J., Vance, D., Archer, C., and Statham, P.J., The determination of the isotopic composition of cu and zn in seawater, Chem. Geol., 2006, vol. 226, nos 3–4, pp. 280–297.
Google Scholar
Bychkova, Ya.V., Sinitsyn, M.Yu., Petrenko, D.B., et al., Method peculiarities of multielemental analysis of rocks with inductively-coupled plasma mass spectrometry, Moscow Univ. Geol. Bull., 2017, vol. 72, no. 1, pp. 56–62.
Google Scholar
Chaussidon, M., Albarede, F.L., and Sheppard, S.M.F., Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamond, Nature, 1987, vol. 330, pp. 242–244.
Google Scholar
Chaussidon, M., Albarede, F.L., and Sheppard, S.M.F., Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions, Earth Planet. Sci. Lett., 1989, vol. 92, pp. 144–156.
Google Scholar
Chernova, N.A., Differentiated trap intrusion of Mt. Zub, Norilsk District, Geol. Geofiz., 1961, no. 5, pp. 65–72.
Czamanske, G.K., Wooden, J.L., Zientek, M.L., et al., Geochemical and isotopic constraints on the petrogenesis of the Noril’sk–Talnakh ore-forming system, Proceedings of the Sudbury–Noril’sk Symposium, Lightfoot, P.C. and Naldrett, A.J. Spec. Publ. Geol. Surv. Ontario, 1994, vol. 5, pp. 313–342.
Distler, V.V., Grokhovskaya, T.L., Evstigneeva, T.L., et al., Petrologiya sul’fidnogo magmaticheskogo rudoobrazovaniya (Petrology of Sulfide Magmatic Ore Formation), Moscow: Nauka, 1988.
Dobretsov, N.L., Kirdyashkin, A.A., Kirdyashkin, A.G., et al., Modelling of thermochemical plumes and implication for the origin of the Siberian traps, Lithos, 2008, vol. 100, pp. 66–92.
Google Scholar
Dodin, D.A., Chernyshev, N.M., and Cherednikova, O.I., Metalogeniya platinoidov krupnykh regionov Rossii (PGE Metallogeny of Large Regions of Russia), Moscow: ZAO “Geoinformmark”, 2001. 302 c.
Google Scholar
Dyuzhikov, O.A., Distler, V.V., Strunin B.M., et al., Geologiya i rudonosnost' Noril’skogo raiona (Geology and Ore Potential of the Norilsk District), Moscow: Nedra. 1988.
Google Scholar
Eldridge, C.S., Compston, W., Williams, I.S., et al., Isotopic evidence for the involvement of recycled sediments in diamond formation, Nature, 1991, vol. 353, pp. 649–653.
Google Scholar
Ernst, R.E. and Buchan, K.L., Maximum size and distribution in time and space of mantle plumes: evidence from large igneous provinces, J. Geodynamics, 2002, vol. 34, pp. 309–342.
Google Scholar
Faure, G., Principles of Isotope Geology, New York: Wiley, 1986.
Google Scholar
Godlevsky, M.N., Trappy i rudonosnye intruzii Noril’skogo raiona (Traps and Ore-Bearing Intrusions of the Norilsk District), Moscow: Gostekhmetizdat, 1959.
Godlevsky, M.N. and Grinenko, L.N., Some data on the sulfur isotope composition of the Norilsk deposit, Geokhimiya, 1963, no. 1, pp. 35–39.
Godlevsky, M.N. and Likhachev, A.P., Types and distinctive features of ore-bearing formations of copper–nickel deposits, Geology and Metallogeny of Copper Deposits, Friedrich, G.H., Genkin, A.D., naldrett, A.J. et al., Berlin: Springer-Verlag, 1986.
Google Scholar
Goverdovskaya, T.G., New data on the morphology of the Zubovskaya differentiated intrusion, Geologiya i poleznye iskopaemye Noril’skogo raiona. Materialy II Noril’skoi geologicheskoi konferentsii (Geology and Mineral Resources of the Norilsk District. Proceedings of 2nd Norilsk Geological Conference), Noril’sk, 1971a, pp. 85–87.
Goverdovskaya, T.G., Pyasino-Vologochaskaya differentiated intrusion, Geologiya i poleznye iskopaemye Noril’skogo raiona. Materialy II Noril’skoi geologicheskoi konferentsii (Geology and Mineral Resources of the Norilsk District. Proceedings of 2nd Norilsk Geological Conference), Noril’sk, 1971b, pp. 84–85.
Graham, S., Pearson, N., Jackson, S., et al., Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit, Chem. Geol., 2004, vol. 207, pp. 147–169.
Google Scholar
Grinenko, L.N., Sulfur isotope composition of sulfides from the Talnakh copper–nickel deposit in relation with its genesis, Geol. Rudn. Mestorozhd., 1966, vol. 8, no. 4, pp. 15–30.
Google Scholar
Grinenko, L.N., H2S-bearing gaseous reservoirs as sulfur source during sulfarization of magmas of the economic ore-bearing intrusions of the Norilsk district, Dokl. Akad. Nauk SSSR, 1984, vol. 278, no. 3, pp. 730–732.
Google Scholar
Grinenko, L.N., Sources of sulfur of the nickeliferous and barren gabbro-dolerite intrusions of the northwest Siberian Platform, Int. Geol. Rev., 1985, vol. 28, pp. 695–708.
Google Scholar
Grinenko, L.N., Sources and conditions of formation of sulfide copper–nickel ores: isotope-geochemical data, Geologiya medno-nikelevykh mestorozhdenii SSSR (Geology of Copper–Nickel Deposits of the USSR), Leningrad: Nauka, 1990, pp. 57–66.
Google Scholar
Grinenko, L.N. and Stepanov, V.K., Isotope relations and sulfur contents in the differentiated intrusions of the Imangda ore cluster, Geokhimiya, 1985, no. 1, pp. 1406–1416.
Hawkesworth, C.J., Lightfoot, P.C., Fedorenko, V.A., et al., Magma differentiation and mineralisation in the Siberian flood basalts, Lithos, 1995, vol. 34, pp. 61–88.
Google Scholar
Horan, M.F., Walker, R.J., Fedorenko, V.A., and Czamanske, G.K., Osmium and neodymium isotopic constraints on the temporal and spatial evolution of Siberian flood basalts sources, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 5159–5168.
Google Scholar
Iacono-Marziano, G., Ferraina, C., Gaillard, F., et al., Assimilation of sulfate and carbonaceous rocks: experimental study, thermodynamic modeling and application to the Noril’sk–Talnakh region (Russia), Ore Geol. Rev., 2017, vol. 89, pp. 399–413.
Google Scholar
Izotopnaya geologiya Noril’skikh mestorozhdenii (Isotope Geology of the Norilsk Deposits), St. Petersburg: VSEGEI, 2017.
Keays, R.R. and Lightfoot, P.C., Crustal sulfur is required to form magmatic Ni–Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan trap basalts, Miner. Deposita, 2010, vol. 45, pp. 241–257.
Google Scholar
Kogarko, L.N., Karpenko, S.F., Lyalikov, A.V., and Teptelev, M.P., Isotope criteria for genesis of meimechite magamtism, Dokl. Akad. Nauk SSSR, 1988, vol. 301, no. 4, pp. 939–942.
Google Scholar
Korovyakov, I.A., Nelyubin, L.E., Raikova, Z.A., and Khortova, L.K., Proiskhozhdenie noril’skikh trappovykh intruzii, nesushchikh sul’fidnye medno-nikelevye rudy (Origin of the Norilsk Trap Intrusion Bearing Sulfide Copper–Nickel Ores), Moscow: Gosgeoltekhizdat, 1963.
Krivolutskaya, N.A., Mantle origin of heavy isotopes of sulfur in ores of the Noril’sk deposits, Dokl. Earth Sci., 2014a, vol. 454, no. 1, pp. 76–78.
Google Scholar
Krivolutskaya, N.A., Evolyutsiya trappovogo magmatizma i Pt-Cu-Ni rudoobrazovanie v Noril’skom raione (Evolution of Trap Magmatism and Pt–Cu–Ni Ore Formation in the Norilsk District), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2014b.
Krivolutskaya, N.A., Siberian Traps and Pt–Cu–Ni Deposits in the Noril’sk Area, Springer International Publishing, 2016.
Google Scholar
Krivolutskaya, N.A., Ariskin, A.A., Sluzhenikin, S.F., and Turovtsev, D.M., Geochemical thermometry of rocks of the Talnakh Intrusion: assessment of the melt composition and the crystallinity of the parental magma, Petrology, 2001, vol. 9, no. 5, pp. 389–414.
Google Scholar
Krivolutskaya, N.A., Sobolev, A.V., Snisar, S.G., et al., Mineralogy, geochemistry and stratigraphy of the Maslovsky Pt–Cu–Ni sulfide deposit, Noril’sk region, Russia: implications for relationship of ore-bearing intrusions and lavas, Miner. Deposita, 2012, vol. 47, pp. 69–88.
Google Scholar
Kuz’min, V.K. and Tuganova, E.V., New data on sulfur isotope composition of the copper–nickel ores of the northwestern Siberian Platform, Geol. Geofiz., 1977, no. 4, pp. 122–125.
Larson, P.B., Maher, K., Ramos, F.C., et al., Copper isotope ratios in magmatic and hydrothermal ore-forming environments, Chem. Geol., 2003, vol. 201, nos. 3–4, pp. 337–350.
Google Scholar
Li, C., Ripley, E.M., and Naldrett, A.J., Compositional variations of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia: implications for ore-forming processes in dynamic magma conduits, Econ. Geol., 2003, vol. 98, pp. 69–86.
Google Scholar
Li, C., Ripley, E.M., and Naldrett, A.J., A new genetic model for the giant Ni–Cu–PGE sulfide deposits associated with the Siberian flood basalts, Econ. Geol., 2009a, vol. 104, no. 2, pp. 291–301.
Google Scholar
Li, W.-Q., Jackson, S.E., Pearson, N.J., et al., The cu isotopic signature of granites from the Lachlan fold belt, SE Australia, Chem. Geol., 2009b, vol. 258, pp. 38–49.
Google Scholar
Lightfoot, P.C., Hawkesworth, C.J., and Hergt, J., Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk district, Siberian trap, Russia, Contrib. Mineral. Petrol., 1993, vol. 114, pp. 171–188.
Google Scholar
Lightfoot, P.C. and Keays, R.R., Siderophile and chalcophile metal variations in flood basalts from the Siberian Trap, Noril’sk Region: implications for the origin of the Ni–Cu–PGE sulfide ores, Econ. Geol., 2005, vol. 100, pp. 439–462.
Google Scholar
Likhachev, A.P., Trap magmatism and Pt–Cu–Ni deposits in the Norilsk district, Otechestvennaya Geol., 1997, no. 10, pp. 8–19.
Likhachev, A.P. Platinoidno-medno-nikelevye i platinovye mestorozhdeniya (Platinum-copper-nickel and platinum deposits), Moscow: Eslan, 2006 (in Russian).
Luck, J.-M., Ben Othman, D., Barrat, J.A., and Albarede, F., Coupled 63Cu and 16O excesses in chondrites, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 143–151.
Google Scholar
Luck, J.-M., Ben Othman, D., and Albarede, F., Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 5351–5363.
Google Scholar
Maher, K.C. and Larson, P.B., Variation in copper isotope ratios and controls on fractionation in hypogene skarn mineralization at Coroccohuayco and Tintaya, Peru, Econ. Geol., 2007, vol. 102, pp. 225–237.
Google Scholar
Malitch, K.N., Belousova, E.A., Griffin, W.L., et al., Magmatic evolution of the ultramafic-mafic Kharaelakh intrusion (Siberian Craton, Russia): insights from trace-element, U-Pb and Hf-isotope data on zircon, Contrib. Mineral. Petrol., 2010, vol. 159, no. 6, pp. 753–768.
Google Scholar
Malitch, K.N. and Latypov, R.M., Re-Os and S-isotope constraints on timing and source heterogeneity of PGE–Cu–Ni sulfide ores: a case study at the Talnakh ore junction (Russia), Can. Mineral., 2011, vol. 49, no. 6, pp. 1653–1677.
Google Scholar
Malitch, K.N., Belousova, E.A., Griffin, W.L., and Badanina, I.Yu., Hafnium-neodymium constraints on source heterogeneity of the economic ultramafic-mafic Noril’sk-I intrusion (Russia), Lithos, 2013, vol. 164–167, pp. 36–46.
Google Scholar
Malitch, K.N., Latypov, R.M., Badanina, I.Yu., and Sluzhenikin, S.F., Insights into ore genesis of Ni–Cu–PGE sulfide deposits of the Noril’sk province (Russia): evidence from copper and sulfur isotopes, Lithos, 2014, vol. 204, pp. 172–187.
Google Scholar
Malitch, K.N., Badanina, I.Yu., Tuganova, E.V., Rudonosnye ul’tramafit-mafitovye intruzivy Polyarnoi Sibiri: vozrast, usloviya obrazovaniya, kriterii prognoza (Ore-bearing Ultramafic–Mafic Intrusions of the Polar Siberia: Age, Origin, and Prediction Criteria), Yekaterinburg: IGG UrO RAN, 2018a.
Malitch, K.N., Stepashko, A.A., Badanina, I.Yu., and Sluzhenikin, S.F., Petrochemical and geochemical heterogeneity of the Noril’sk-1 economic ultramafic–mafic intrusion, Russia, Tr. Inst. Geol. Geokhim. Ural Otd. Ross. Akad. Nau, 2018b, vol. 165, pp. 123–130 (in Russian).
Google Scholar
Malitch, K.N., Belousova, E.A., Griffin, W.L., et al., New insights on the origin of ultramafic-mafic intrusions and associated Ni–Cu–PGE sulfide deposits of the Noril’sk and Taimyr provinces, Russia: evidence from radiogenic- and stable-isotope data, Processes and Ore Deposits of Ultramafic-Mafic Magmas Through Space and Time Mondal, S. and Griffin, W.L., Eds., Elsevier, 2018c, pp. 197–238.
Marechal, C. and Albarede, F., Ion-exchange fractionation of copper and zinc isotopes, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 1499–1509.
Google Scholar
Markl, G., Lahaye, Y., and Schwinn, G., Copper isotopes asmonitors of redox processes in hydrothermal mineralization, Geochim. Cosmochim. Acta, 2006, vol. 70, pp. 4215–4228.
Google Scholar
Mason, T.F.D., Weiss, D.J., Chapman, J.B., et al., Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia, Chem. Geol., 2005, vol. 221, pp. 170–187.
Google Scholar
Mathur, R., Ruiz, J., Titley, S., et al., Cu isotopic fractionation in the supergene environment with and without bacteria, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 22, pp. 5233–5246.
Google Scholar
Mathur, R., Titley, S., Barra, F., et al., Exploration potential of Cu isotope fractionation in porphyry copper deposits, J. Geochem. Explor., 2009, vol. 102, no. 1, pp. 1–6.
Google Scholar
Mathur, R., Ruiz, J., Casselman, M.J., et al., Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Canariaco Norte porphyry copper deposit, northern Peru, Miner. Deposita, 2012, vol. 47, pp. 755–762.
Google Scholar
McBirney, A.R. and Noyes, R.M., Crystallization and layering of the Skaergaard intrusion, J. Petrol., 1979, vol. 20, pp. 487–554.
Google Scholar
Ben Othman, D., Luck, J.M., Bodinier, J.L., et al., Cu-Zn isotopic variations in the Earth’s mantle, Geochim. Cosmochim. Acta, 2006, vol. 70, (18 suppl. 1), A46
Petrov, O.V., Malitch, K.N., Tuganova, E.V., et al., Test-methodical investigations on elaborating isotope-geochemical criteria for prospecting platinum-group metals, gold, copper, nickel, an cobalt in the layered intrusions of the northern Central Siberia, Krasnoyarsk Krai, Izv. VSEGEI, 2009, vol. 8, pp. 248–262.
Google Scholar
Pin, C., Joannon, S., Bosq, Ch., et al., Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following separation of the analytes, J. Analyt. Atom. Spectrom., 2003, vol. 18, pp. 135–141.
Google Scholar
Pokrovskii, B.G., Sluzhenikin, S.F., Krivolutskaya N.A. Interaction conditions of Noril’sk Trap intrusions with their host rocks: isotopic (O, H, and C) evidence, Petrology, 2005, vol. 13, no. 1, pp. 49–72.
Google Scholar
Prasolov, E.M., Sergeev, S.A., Belyatsky, B.V., et al., Isotopic systematics of He, Ar, S, Cu, Ni, Re, Os, Pb, U, Sm, Nd, Rb, Sr, Lu, and Hf in the rocks and ores of the Norilsk Deposits, Geochem. Int., 2018, vol. 56, no. 1, pp. 46–64.
Google Scholar
Pushkarev, Yu.D., Two interaction modes of crustal and mantle materials and a new approach to problems of deep ore formation, Dokl. Earth Sci., 1997, vol. 335, no. 4, pp. 881–883.
Google Scholar
Reichow, M.K., Pringle, M.S., Al’mukhamedov, A.I., et al., The timing and extent of the eruption of the Siberian traps large igneous province: implications for the end-permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 9–20.
Google Scholar
Richard, P., Shimizu, N., and Allegre, C.J., 143Nd/146Nd a natural tracer: an application to oceanic basalts, Earth Planet. Sci. Lett., 1976, vol. 31, pp. 269–278.
Google Scholar
Ripley, E.M. and Li, C., Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu–Ni–PGE deposits, Econ. Geol., 2003, vol. 98, pp. 635–641.
Google Scholar
Ripley, E.M. and Li, C., Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni–Cu–PGE ore genesis?, Econ. Geol., 2013, vol. 108, pp. 45–58.
Google Scholar
Ripley, E.M., Lightfoot, P.C., Li, C., and Elswick, E.R., Sulfur isotopic studies of continental flood basalts in the Noril’sk region: implications for the association between lavas and ore-bearing intrusions, Geochim. Cosmochim. Acta, 2003, vol. 67, pp. 2805–2817.
Google Scholar
Ripley, E.M., Li, C., Moore, C.H., and Schmitt, A.K., Micro-scale s isotope studies of the Kharaelakh intrusion, Noril’sk region, Siberia: constraints on the genesis of coexisting anhydrite and sulfide minerals, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 634–644.
Google Scholar
Ripley, E.M., Dong, S., Li, C., and Wasylenki, L.E., Cu isotope variations between conduit and sheet-style Ni–Cu–(PGE) sulfide mineralization in the midcontinent rift system, North America, Chem. Geol., 2015, vol. 414, pp. 59–68.
Google Scholar
Rouxel, O., Fouquet, Y., and Ludden, J.N., Copper isotope systematics of the Lucky Strike, Rainbow, and Logatchev seafloor hydrothermal fields on the mid-atlantic ridge, Econ. Geol., 2004, vol. 99, pp. 585–600.
Google Scholar
Ryabov, V.V., Olivin sibirskikh trappov kak pokazatel' petrogenezisa i rudoobrazovaniya (Olivine of the Siberian Traps as Indicator of Petrogenesis and Ore Formation), Novosibirsk: Nauka, 1992.
Ryabov, V.V., Shevko, A.Ya., and Gora, M.P., Magmaticheskie porody Noril’skogo raiona. T. 1. Petrologiya trappov (Magmatic Rocks of the Norilsk District. Volume 1. Petrology of Traps), Novosibirsk: Nonparel’, 2000.
Sluzhenikin, S.F., Krivolutskaya, N.A., Rad’ko, V.A., et al., Ultramafic-mafic intrusions, volcanic rocks and PGE–Cu–Ni sulfide deposits of the Noril’sk Province, Polar Siberia. Field Trip Guidebook. 12th International Platinum Symposium, Simonov, O.N., Ed., Yekaterinburg: IGG UB RAS, 2014.
Sluzhenikin, S.F. and Krivolutskaya, N.A., “Pyasino–Vologochan intrusion: geological structure and platinum–copper–nickel ores (Norilsk Region),” Geol. Ore Deposits, 2015, vol. 57, no. 5, pp. 381–402.
Google Scholar
Sluzhenikin S.F., Malitch K.N., Grigor’eva A.V. Differentiated mafic–ultramafic intrusions of the Kruglogorsky type in the Noril’sk area: petrology and ore potential, Petrology, 2018, vol. 26, no. 3, pp. 280–313.
Google Scholar
Starostin, V.I. and Sorokhtin, O.G., A new assessment of the Noril’sk-type deposits origin, Moscow Univ. Geol. Bull., 2011, vol. 66, no. 2, pp. 73–83.
Google Scholar
Tuganova, E.V., Formatsionnye tipy, genezis i zakonomernosti razmeshcheniya sul’fidnykh platinoidno-medno-nikelevykh mestorozhdenii (Formation Type, Genesis, and Distribution of Sulfide Platinoid–Copper–Nickel Deposits), St. Petersburg: VSEGEI, 2000.
Tuganova, E.V. and Shergina, Yu.P., Isotope-geochemical discontinuity of rocks of the ore-bearing intrusions of the Talnakh–Norilsk type and genetic implications, Regional. Geol. Metallogen., 2003, no. 17, pp. 140–146.
Tuganova, E.V. and Shergina, Yu.P., Isotope-geochemical peculiarities of the Norilsk-type intrusions, Nedra Taimyra, 1997, vol. 2, pp. 114–122.
Google Scholar
Turovtsev, D.M., Kontaktovyi metamorfizm Noril’skikh intruzii (Contact Metamorphism of the Norilsk Intrusions), Moscow: Nauchnyi mir, 2002.
Vinogradov, A.P. and Grinenko, L.N., Sulfur isotope composition of the copper–nickel deposits and occurrences of the Norilsk district in relation with problems of their genesis, Geokhimiya, 1966, no. 1, pp. 3–14.
Walker, R.J., Morgan, J.W., Horan, M.F., et al., Re-Os isotopic evidence for an enriched-mantle source for the Noril’sk-type ore-bearing intrusions, Siberia, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 4179–4197.
Google Scholar
Wasson, J.T. and Kallemeyn, G.W., Composition of chondrites, Philos. Trans. R. Soc., 1988, vol. 325, no. 1587, pp. 535–544.
Google Scholar
Wooden, J.L., Czamanske, G.K., Bouse, R.M., et al., Pb isotope data indicate a complex mantle origin for the Norilsk–Talnakh ores, Siberia, Econ. Geol., 1992, vol. 87, pp. 1153–1165.
Google Scholar
Wu, L.-Y., Hu, R.-Z., Li, X.-F., et al., Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu–Au deposit, South China: implications for deposit origin, Ore Geol. Rev., 2017, vol. 83, pp. 191–199.
Google Scholar
Yang, J.-H., Wu, F.-Y., Chung, S.-L., et al., A hybrid origin for the Qianshan A-type granite, northeast china: geochemical and Sr–Nd–Hf isotopic evidence, Lithos, 2006, vol. 89, pp. 89–106.
Google Scholar
Zhao, Y., Xue, C., Liu, S.-A., et al., Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China, Lithos, 2017, vol. 286-287, pp. 206–215.
Google Scholar
Zhu, X.K., O’Nions, R.K., Guo, Y., et al., Determination of natural Cu-isotope variation by plasma-source mass spectrometry: implications for use as geochemical tracers, Chem. Geol., 2000, vol. 163, pp. 139–149.
Google Scholar
Zhu, X.K., Guo, Y., Williams, R.J.P., et al., Mass fractionation processes of transition metal isotopes, Earth Planet. Sci. Lett., 2002, vol. 200, pp. 47–62.
Google Scholar
Zolotukhin, V.V., Ryabov V.V., Vasil’ev, Yu.R., and Shatkov, V.V., Petrologiya Talnakhskoi rudonosnoi differentsirovannoi trappovoi intruzii (Petrology of the Talnakh Ore-Bearing Differentiated Trap Intrusion), Novosibirsk: Nauka, 1975.