Skip to main content
Log in

Silicate Liquid Immiscibility as a Result of Fenner-Type Crystal Fractionation of Wangtian’e Tholeiitic Melts, Northeast China

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The results of a study of mineral-hosted melt inclusions were used to reconstruct the evolution of tholeiitic melts that produced the rocks of the shield edifice of Wangtian’e volcano, Northeast China, including the P–T parameters of their crystallization. Primary melt inclusions were studied in plagioclase of tholeiitic basalts. They contain “dry” Fe-rich silicate glass or a crystallized fine-grained mineral aggregate, feldspar rim, and globules of various compositions: water-bearing Fe-rich globules, water-bearing Si-rich globules and “dry” Si-rich globules. In the groundmass of tholeiitic basalts, “dry” Si-rich and Fe-rich glasses, as well as hydrated Fe-rich glass with an H2O content of up to 10–15 wt.% were identified. The fractional crystallization path of Wangtian’e tholeiitic melts was calculated by the COMAGMAT-5.2.2 software using glass compositions of homogenized melt inclusions in plagioclase from the basalts. It was shown that the calculated temperatures of the beginning of plagioclase crystallization are in good agreement with temperatures obtained in thermometric experiments with melt inclusions in plagioclase, and correspond to 1180–1200°C. Based on our studies, several stages of the melt differentiation during the formation of Wangtian’e volcanic rocks were identified. The first stage includes the Fenner-type crystal fractionation of the melt due to the appearance of plagioclase on the liquidus at the beginning of magma crystallization. The separation of the ferrobasaltic melt into Si-rich and Fe-rich silicate immiscible liquids (“dry” and hydrated) corresponds to the second stage of differentiation. The occurrence of silicate liquid immiscibility follows from the presence of Fe-rich and Si-rich glasses in the intergranular space of the basalts and in the melt inclusions in plagioclase of these rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Andreeva, O.A., Yarmolyuk, V.V., Andreeva, I.A., et al., The composition and sources of magmas of Changbaishan Tianchi Volcano (China–North Korea), Dokl. Earth Sci., 2014, vol. 456, no. 1, pp. 572–578.

    Google Scholar 

  2. Andreeva, O.A., Andreeva, I.A., Yarmolyuk, V.V., et al., Evolution of melts of the Changbaishan Tianchi Volcano (China–North Korea) as a model of ore–magmatic system formation: data from melt inclusions studies, Dokl. Earth Sci., 2016, vol. 466, no. 1, pp. 82–87.

    Google Scholar 

  3. Andreeva, O.A., Yarmolyuk, V.V., Andreeva, I.A., and Borisovskiy, S.E., Magmatic evolution of Changbaishan Tianchi Volcano, China–North Korea: evidence from mineral-hosted melt and fluid inclusions, Petrology, 2018, vol. 26, no.5, pp. 535-566.

    Google Scholar 

  4. Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., and Barmina, G.S., The COMAGMAT-5: modeling the effect of Fe–Ni sulfide immiscibility in crystallizing magmas and cumulates, J. Petrol., 2018, vol. 59, no. 2, pp. 283–298.

    Google Scholar 

  5. Babansky, A.D., Ryabchikov, I.D., and Bogatikov, O.A., Evolyutsiya shchelochno-zemel’nykh magm (Evolution of Alkali-Earth Magmas), Moscow: Nauka, 1983.

  6. Ballhaus, C., Fonseca, R.O.C., Munker, K., et al., Spheroidal textures in igneous rocks—textural consequences of H2O saturation in basaltic melts, Geochim. Cosmochim. Acta, 2015, vol. 167, pp. 241–252.

    Google Scholar 

  7. Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., and Zanettin, B., A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 1986, vol. 27, p. 745.

    Google Scholar 

  8. Brooks, C.K. and Nielsen, T.F.D., Early stages in the differentiation of the Skaergaard magma as revealed by a closely related suite of dike rocks, Lithos, 1978, vol. 11, pp. 1–14.

    Google Scholar 

  9. Carmichael, I.S.E., The petrology of Thingmuli, a Tertiary volcano in eastern Iceland, J. Petrol., 1964, vol. 5, pp. 435–460.

    Google Scholar 

  10. Chai, F., Yang, F., Liu, F., et al., The Aagong apatite-rich magnetite deposit in the Chinese Altay orogenic belt: a Kiruna-type iron deposit, Ore Geol. Rev., 2014, vol. 57, pp. 482–497.

    Google Scholar 

  11. Charlier, B., Namur, O., Toplis, M.J., et al., Large-scale silicate liquid immiscibility during differentiation of tholeiitic basalt to granite and the origin of the Daly gap, Geology, 2011, vol. 39, pp. 907–910.

    Google Scholar 

  12. Charlier, B. and Grove, T.L., Experiments on liquid immiscibility along tholeiitic liquid lines of descent, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 27–44.

    Google Scholar 

  13. Dixon, S. and Rutherford, M.J., Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study, Earth Planet. Sci. Lett., 1979, vol. 45, pp. 45–60.

    Google Scholar 

  14. Duchesne, J.C., Fe-Ti deposits in Rogaland anorthosites (South Norway): geochemical characteristics and problems of interpretation, Mineral. Deposita, 1999, vol. 34, pp. 182–198.

    Google Scholar 

  15. Eggler, D.H. and Osborn, E.F., Experimental studies of the system MgO–FeO–Fe2O3-NaAlSi3O8-CaAl2Si2O8–SiO2—a model for subalkaline magmas, Am. J. Sci., 1982, vol. 282, pp. 1012–1041.

    Google Scholar 

  16. Fan, Q.C., Liu, R.X., Zhang, G.H., et al., The genesis and evolution of bimodal volcanic rocks in Wangtian’e Colcano, Changbaishan (in Chinese), Acta Petrol. Sinica, 1998, vol. 14, pp. 305–317.

    Google Scholar 

  17. Fan, Q., Liu, R., Li, D., and Li, Q., Significance of K-Ar age of bimodal volcanic rocks at Wangtian’e Colcano, Changbaishan area, Chinese Sci. Bull., 1999, vol. 44, no. 7, pp. 660–663.

    Google Scholar 

  18. Fan, Q., Sui, J.L., Wang, T.H., et al., History of volcanic activity, magma evolution and eruptive mechanisms of the Changbai volcanic province, Geol. J. China Univ., 2007, no. 13, pp. 175–190.

  19. Fischer, L.A., Wang, M., Charlier, B., et al., Immiscible iron-and silica-rich liquids in the upper zone of the Bushveld complex, Earth Planet. Sci. Lett., 2016, vol. 443, pp. 108–117.

    Google Scholar 

  20. Ghiorso, M.S. and Carmichael, I.S.E., Modeling magmatic systems: petrologic applications, Rev. Mineral. Geochem., 1987, vol. 17, pp. 467–499.

    Google Scholar 

  21. Ghiorso, M.S. and Evans, B.W., Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer, Amer. J. Sci., 2008, vol. 308, pp. 957–1039.

    Google Scholar 

  22. Higgins, M.D., A new model for the structure of the Sept Iles intrusive suite, Canada, Lithos, 2005, vol. 83, pp. 199–213.

    Google Scholar 

  23. Holness, M.B., Stripp, G., Humphreys, M.C.S., et al., Silicate liquid immiscibility within the crystal mush: late-stage magmatic microstructures in the Skaergaard intrusion, East Greenland, J. Petrol., 2011, vol. 52, pp. 175–222.

    Google Scholar 

  24. Hou, T. and Veksler, I.V., Experimental confirmation of high-temperature silicate liquid immiscibility in multicomponent ferrobasaltic systems, Am. Mineral., 2015, vol. 100, pp. 1304–1307.

    Google Scholar 

  25. Hou, T., Charlier, B., Holtz, F., et al., Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide-apatite ore deposits, Nat. Commun., 2018, vol. 9, no. 1415, pp. 1–8.

    Google Scholar 

  26. Hunter, R.H. and Sparks, R.S.J., The differentiation of the Skaergaard intrusion, Contrib. Mineral. Petrol., 1987, vol. 95, pp. 451–461.

    Google Scholar 

  27. Irvine, T.N. and Baragar, W.R.A., A guide to chemical classification of the common volcanic rocks, Can. J. Earth Sci., 1971, vol. 8, pp. 523–548.

    Google Scholar 

  28. Irvine, T.N., Andersen, J.C., and Brooks, C.K., Included blocks (and blocks within blocks) in the Skaergaard intrusion: geological relations and the origins of rhythmic modally graded layers, Geol. Soc. Am. Bull., 1998, vol. 110, pp. 1398–1447.

    Google Scholar 

  29. Jakobsen, J.K., Veksler, I.V., Tegner, C., and Brooks, C.K., Crystallization of the Skaergaard intrusion from an emulsion of immiscible iron- and silica-rich liquids: evidence from melt inclusions in plagioclase, J. Petrol., 2011, vol. 52, pp. 345–373.

    Google Scholar 

  30. Jiang, N. and Chu, X., A magnetite-apatite deposit in the Fanshan alkaline ultramafic complex, northern china, Econ. Geol., 2004, vol. 99, pp. 397–408.

    Google Scholar 

  31. Kadik, A.A., Maksimov, A.P., and Ivanov, B.V., Fiziko-khimicheskie usloviya kristallizatsii i genezis andezitov (Physicochemical Conditions of Crystallization and Genesis of Andesites), Moscow: Nauka, 1986.

  32. Kadik, A.A., Lukanin, O.A., and Lapin, I.V., Fiziko-khimicheskie usloviya evolyutsii bazal’tovykh magm v pripoverkhnostnykh ochagakh (Physicochemical Conditions of Evolution of Basaltic Magmas in Subsurface Chambers), Moscow: Nauka, 1990.

  33. Kamenetsky, V.S., Charlier, B., Zhitova, L., et al., Magma chamber-scale liquid immiscibility in the Siberian traps represented by melt pools in native iron, Geology, 2013, vol. 41, no. 10, pp. 1091–1094.

    Google Scholar 

  34. Kolker, A., Mineralogy and geochemistry of Fe–Ti oxide and apatite (nelsonite) deposits and evaluation of the liquid immiscibility hypothesis, Econ. Geol., 1982, vol. 77, pp. 1146–1158.

    Google Scholar 

  35. Kuno, H., Fractionation trends of basalt magmas in lava flows, J. Petrol., 1965, vol. 6, pp. 302–321.

    Google Scholar 

  36. Kupletskii, B.M., Palagonite basalts of Timan, Tr. Inst. Geol. Nauk AN SSSR, 1940, vol. 25, ser. 8, pp. 7–22.

  37. Lapin, I.V., Lukanin, O.A., and Kadik, A.A., Influence of redox mode on crystallization and differentiation of Iceland basalts under subsurface conditions, Geokhimiya, 1985, no. 6, pp. 747–760.

  38. Liu, J., Chen, Sh.-Sh., Guo, Zh., et al., Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China–Korea border, Lithos, 2015, vol. 236–237, pp. 46–73.

    Google Scholar 

  39. Lukanin, O.A., Reasons of bimodal distribution of volcanic series rocks, Geokhimiya, 1985, no. 3, pp. 348–359.

  40. McBirney, A.R. and Nakamura, Y., Immiscibility in late-stage magmas of the Skaergaard intrusion, Carnegie Inst.Washington Yearbook, 1974, vol. 73, pp. 348–352.

    Google Scholar 

  41. McBirney, A.R. and Naslund, H.R., The differentiation of the Skaergaard intrusion. A discussion of Hunter and Sparks (Contrib. Mineral. Petrol., vol. 95, pp. 451–461), Contrib. Mineral. Petrol., 1990, vol. 104, pp. 235–240.

    Google Scholar 

  42. Morse, S.A., Kiglapait geochemistry IV: The major elements, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 461–479.

    Google Scholar 

  43. Mysen, B., Water-melt interaction in hydrous magmatic systems at high temperature and pressure, Progress in Earth Planet. Sci., 2014, vol. 1, p. 4.

    Google Scholar 

  44. Naslund, H.R., The effect of oxygen fugacity on liquid immiscibility in iron-bearing silicate melts, Am. J. Sci., 1983, vol. 283, pp. 1034–1059.

    Google Scholar 

  45. Naslund, H.R., Petrology of the upper border series of the Skaergaard intrusion, J. Petrol., 1984, vol. 25, pp. 185–212.

    Google Scholar 

  46. Osborn, E.F., Role of oxygen pressure in the crystallization and differentiation of basaltic magma, Am. J. Sci., 1959, vol. 257, pp. 609–647.

    Google Scholar 

  47. Peretyazhko, I.S. and Savina, E.A., Silicate–iron liquid immiscibility in rhyolitic magma, Dokl. Earth Sci., 2014, vol. 457, no. 2, pp. 1028–1033.

    Google Scholar 

  48. Philpotts, A.R., Textural evidence for liquid immiscibility in tholeiites, Mineral. Mag., 1978, vol. 42, pp. 113–127.

    Google Scholar 

  49. Philpotts, A.R., Liquid immiscibility in silicate melt inclusions in plagioclase phenocrysts, Soc. Fr. Mineral. Cristallogr. Bull., 1981, vol. 104, pp. 1–8.

    Google Scholar 

  50. Philpotts, A.R., Compositions of immiscible liquids in volcanic rocks, Contrib. Mineral. Petrol., 1982, vol. 80, pp. 201–218.

    Google Scholar 

  51. Presnall, D.C., The join forsterite–diopside–iron oxide and its bearing on the crystallization of basaltic and ultramafic magmas, Am. J. Sci., 1966, vol. 264, pp. 753–809.

    Google Scholar 

  52. Roedder, E., Low-temperature liquid immiscibility in the system K2O–FeO–Al2O3–SiO2, Am. Mineral., 1951, vol. 36, pp. 282–286.

    Google Scholar 

  53. Roedder, E., Silicate liquid immiscibility in magmas and in the system K2O–FeO–Al2O3–SiO2: an example of serendipity, Geochim. Cosmochim. Acta, 1978, vol. 43, pp. 1597–1617.

    Google Scholar 

  54. Roedder, E. and Weiblen, P.W., Lunar petrology of silicate melt inclusions, Apollo 11 rocks, Apollo 11 Lunar Sci. Conf. Proc: Geochim. Cosmochim. Acta, 1970, pp. 801–837.

  55. Ryabov, V.V., Likvatsiya v prirodnykh steklakh na primere trappov (Liquid Immiscibility in Natural Glasses by the Example of Traps), Novosibirsk: Nauka SO, 1989.

  56. Sakhno, V.G., Noveishii i sovremennyi vulkanizm yuga Dal’nego Vostoka (pozdnepleistotsen-golotsenovyi etap) (Youngest and Modern Volcanism of Southern Far East: Late Pleistocene–Holocene Stage), Vladivostok: Dal’nauka, 2008.

  57. Sazonova, Z.A., Petrography of basalts of Cheshskya Bay, Tr. Petrograf. Inst. AN SSSR, 1938, vol. 12, pp. 107–154.

    Google Scholar 

  58. Sensarma, S. and Palme, H., Silicate liquid immiscibility in the ~2.5 Ga Fe-rich andesite at the top of the Dongargarh large igneous province (India), Lithos, 2013, vol. 170–171, pp. 239–251.

    Google Scholar 

  59. Sisson, T.W., Ratajeski, K., Hankins, W.B., and Glazner, A.F., Voluminous granitic magmas from common basaltic sources, Contrib. Mineral. Petrol., 2005, vol. 148, pp. 635–61.

    Google Scholar 

  60. Snyder, D., Carmichael, I.S.E., and Wiebe, R.A., Experimental study of liquid evolution in a fe-rich, layered mafic intrusion: constraints of the Fe–Ti oxide precipitation on the T–fO2 and t-P paths of tholeiitic magmas, Contrib. Mineral. Petrol., 1993, vol. 113, pp. 73–86.

    Google Scholar 

  61. Sobolev, A.V., Melt inclusions in minerals as a source of principle petrological information, Petrology, 1996, vol. 4, no. 3, pp. 209–220.

    Google Scholar 

  62. Toplis, M.J. and Carroll, M.R., An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems, J. Petrol., 1995, vol. 36, pp. 1137–1170.

    Google Scholar 

  63. Wager, L. and Brown, G., Layered Igneous Rocks, Edinburgh–London: Oliver and Boyd, 1968.

    Google Scholar 

  64. Veksler, I.V., Dorfman, A.M., Borisov, A.A., et al., Liquid immiscibility and the evolution of basaltic magma, J. Petrol., 2007, vol. 48, pp. 2187–2210.

    Google Scholar 

  65. Veksler, I.V., Dorfman, A.M., Borisov, A.A., et al., Liquid immiscibility and evolution of basaltic magma: reply to S.A. Morse, A.R. McBirney and A.R. Philpotts, J. Petrol., 2008, vol. 49, pp. 2177–2186.

    Google Scholar 

  66. Velasco, F., Tornos, F., and Hanchar, J.M., Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits, Ore Geol. Rev., 2016, vol. 79, pp. 346–366.

    Google Scholar 

  67. Visser, W. and Koster van Groos, A.F., Liquid immiscibility in K2O–FeO–Al2O3–SiO2, Nature, 1976, pp. 426–427.

Download references

ACKNOWLEDGMENTS

The authors thank Z.A. Kotelnikova and A.Yu. Bychkov for constructive criticism that led us to improve the manuscript.

Funding

This study was carried out at the Laboratory of Rare-Metal Magmatism of the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences, under government-financed research program 0136-2018-0026 “Mantle–Crust Interaction in Areas of Anorogenic Magmatism and Its Role in Generating Rare-Metal Magmas: A Case Study of the Central Asian Orogenic Belt” (headed by Acad. V.V. Yarmolyuk). Microprobe and ion-probe studies of melt inclusions were supported by the Russian Foundation for Basic Research, project no. 20-05-00306, and Grant MK-2419.2019.5 from the President of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Andreeva.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, O.A., Andreeva, I.A., Yarmolyuk, V.V. et al. Silicate Liquid Immiscibility as a Result of Fenner-Type Crystal Fractionation of Wangtian’e Tholeiitic Melts, Northeast China. Petrology 28, 357–373 (2020). https://doi.org/10.1134/S0869591120040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591120040025

Keywords:

Navigation