Advertisement

Petrology

, Volume 26, Issue 2, pp 145–166 | Cite as

Coupling of Redox Conditions of Mantle Melting and Copper and Sulfur Contents in Primary Magmas of the Tolbachinsky Dol (Kamchatka) and Juan de Fuca Ridge (Pacific Ocean)

  • N. L. Mironov
  • M. V. Portnyagin
Article

Abstract

The compositions of parental melts of Tolbachinsky Dol (Kamchatka) basalts were estimated from the compositions of olivine-hosted (Fo90.5-83.1) primitive melt inclusions in the rocks of the Northern breakthrough of the Great Tolbachik Fissure Eruption (1975 A.C.) and of the late-Holocene cone “1004”. The parental melts contain 100–150 ppm Cu and 0.16–0.30 wt % S. These concentrations are much higher than those determined for the initial magmas of mid-ocean ridge basalts (MORB), for example of the Juan de Fuca ridge (Cu = 55–105 ppm, S=0.09–0.12 wt %). Modeling of mantle melting under variable redox conditions demonstrated that the high Cu and S contents in the Tolbachinsky Dol melts can be obtained by 6–12% melting of DMM-like source under oxidized conditions (ΔQFM = +1.2 ± 0.1) and do not require a significant (>30–35% for S) subduction-related influx of these elements to the mantle source. The high contents of Cu and S in the Tolbachinsky Dol melts are largely explained by the increase of sulfide solubility in a silicate melt under oxidized conditions. In contrast, relatively reduced (ΔQFM ∼ 0) conditions of MORB generation result in low contents of Cu and S in their initial magmas. The estimated ΔQFM values agree well with the data obtained using the Cr-spinel–olivine oxybarometer. The high oxygen potential of Tolbachinsky Dol primary magmas is inherited by more evolved magmas, thus favouring Cu enrichment up to 270 ppm during magma fractionation, approaching maximum copper contents in the global systematics of island-arc rocks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 2012-13 Tolbachik eruption, B. Edwards, A. Belousov, M. Belousova, A. Volynets, L. Wilson (Eds), J. Volcanol. Geotherm. Res., 2015, V. 307, Special issue, (222 pp.).Google Scholar
  2. Almeev, R.R., Holtz, F., Koepke, J., et al., The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa, Am. Mineral., 2007, vol. 92, pp. 670–674.CrossRefGoogle Scholar
  3. Ariskin, A.A. and Barmina, G.S., COMAGMAT: development of a magma crystallization model and its petrological applications, Geochem. Int. 2004, 42 (Suppl. 1), S1–S157.Google Scholar
  4. Ariskin, A.A., Danyushevsky, L.V., Bychkov, K.A., et al., Modeling solubility of Fe–Ni sulfides in basaltic magmas: the effect of nickel, Econ. Geol., 2013, vol. 108, pp. 1983–2003.Google Scholar
  5. Balesta, S.T. Zemnaya kora i magmaticheskie ochagi oblastei sovremennogo vulkanizma (Crust and Magmatic Chambers in the Areas of Modern Volcanism) Moscow: Nauka, 1981.Google Scholar
  6. Ballhaus, C., Berry, R.F., and Green, D.H., High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 27–40.CrossRefGoogle Scholar
  7. Beaudoin, Y., Scott, S.D., Gorton, M.P., et al., Pb and other ore metals in modem seafloor tectonic environments: evidence from melt inclusions, Mar. Geol., 2007, vol. 242, pp. 271–289.Google Scholar
  8. Borisov, A.A., Crystallization and stability of noble metal alloys in the magmatic process, Geol. Ore Deposits, 2005, vol. 47, no. 6, pp. 469–475.Google Scholar
  9. Borisov, A.A. and Shapkin, A.I., A new empirical equation rating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature, Geoch. Int., 1990, v. 27, n. 1, pp. 111–116. Translated from Geokhimiya, 1989, no. 6, pp. 892–897.Google Scholar
  10. Botcharnikov, R.E., Linnen, R.L., Wilke, M., et al., High gold concentrations in sulphide-bearing magma under oxidizing conditions, Nature Geosci., 2011, vol. 4, pp. 112–115.CrossRefGoogle Scholar
  11. Chiaradia, M., Copper enrichment in arc magmas controlled by overriding plate thickness, Nature Geosci., 2014, vol. 7, pp. 43–46.CrossRefGoogle Scholar
  12. Churikova, T., Dorendorf, F., and Worner, G., Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation, J. Petrol., 2001, vol. 42, pp. 1567–1593.CrossRefGoogle Scholar
  13. Cottrell, E. and Kelley, K.A., The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle, Earth Planet. Sci. Lett., 2011, vol. 305, pp. 270–282.CrossRefGoogle Scholar
  14. Danyushevsky, L.V., Della-Pasqua, F.N., and Sokolov, S., Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications, Contrib. Mineral. Petrol., 2000, vol. 138, pp. 68–83.CrossRefGoogle Scholar
  15. Danyushevsky, L.V., Perfit, M.R., Eggins, S.M., and Falloon, T.J., Crustal origin for coupled “ultra-depleted” and “plagioclase” signatures in MORB olivine-hosted melt inclusions: evidence from the Siqueiros transform fault, East Pacific Rise, Contrib. Mineral. Petrol., 2003, vol. 144, pp. 619–637.CrossRefGoogle Scholar
  16. Danyushevsky, L.V. and Plechov, P., Petrolog3: integrated software for modeling crystallization processes, Geochem., Geophys., Geosyst., 2011, vol. 12, no. 7. doi 10.1029/2011GC003516Google Scholar
  17. Dmitriev L.V., Sokolov S.Yu., and Plechova A.A. Statistical Assessment of Variations in the Compositional and P–T Parameters of the Evolution of Mid-Oceanic Ridge Basalts and Their Regional Distribution, Petrology, 2006, vol. 14, no. 3, pp. 209–229.CrossRefGoogle Scholar
  18. Evans, K.A., Elburg, M.A., and Kamenetsky, V.S., Oxidation state of subarc mantle, Geology, 2012, vol. 40, pp. 783–786.CrossRefGoogle Scholar
  19. Ford, C.E., Russel, D.G., Graven, J.A., and Fisk, M.R., Olivine–liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca, and Mn, J. Petrol., 1983, vol. 24, pp. 256–265.CrossRefGoogle Scholar
  20. Gale, A., Dalton, C.A., Langmuir, C.H., et al., The mean composition of ocean ridge basalts, Geochem., Geophys., Geosyst., 2013. doi 10.1029/2012GC004334Google Scholar
  21. GEOROC, Geochemistry of rocks of the oceans and continents, 2017, http://georoc.mpch-mainz.gwdg.de/georoc/Start.aspGoogle Scholar
  22. Green, D.H., Falloon, T.J., and Taylor, W.R., Mantle derived magmas - role of variable source peridotite and variable C–H–O fluid compositions, in Magmatic Processes: Physicochemical Principles, Mysen, B.O., Ed., Geol. Soc. Sp. Publ., 1987, vol. 1, pp. 139–154.Google Scholar
  23. Jarosewich, E.J., Nelen, J.A., and Norberg, J.A., Reference samples for electron microprobe analysis, Geostand. Newslett., 1980, vol. 4, pp. 43–47.CrossRefGoogle Scholar
  24. Jégo, S. and Dasgupta, R., The fate of sulfur during fluidpresent melting of subducting basaltic crust at variable oxygen fugacity, J. Petrol., 2014, vol. 55, pp. 1019–1050.CrossRefGoogle Scholar
  25. Jenner, F.E. and O’Neill, H.S.C., Analysis of 60 elements in 616 ocean floor basaltic glasses, Geochem., Geophys., Geosyst., 2012, vol. 13, p. Q02005. doi 10.1029/2011GC004009Google Scholar
  26. Jochum, K.P., Stoll, B., Herwig, K., et al. MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios, Geochem., Geophys., Geosyst., 2006, vol. 7, Q02008. doi 10.1029/2005GC001060CrossRefGoogle Scholar
  27. Jugo, P.J., Wilke, M., and Botcharnikov, R.E., Sulfur Kedge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 5926–5938.CrossRefGoogle Scholar
  28. Kadik, A.A., Oxygen fugacity regime in the upper mantle as a reflection of the chemical differentiation of planetary materials, Geochem. Int., 2006, vol. 44, no. 1, pp. 56–71.CrossRefGoogle Scholar
  29. Kamenetsky, V.S., Davidson, P., Mernagh, T.P., et al., Fluid bubbles in melt inclusions and pillow–rim glasses: high-temperature precursors to hydrothermal fluids?, Chem. Geol., 2002, vol. 183, pp. 349–364.CrossRefGoogle Scholar
  30. Kamenetsky, V.S., Zelenski, M., Gurenko, A. et al., Silicate- sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt // Chem. Geol., 2017, vol. 471, pp. 92–110.CrossRefGoogle Scholar
  31. Kelley, K.A. and Cottrell, E., Water and the oxidation state of subduction zone magmas, Science, 2009, vol. 325, pp. 605–607.CrossRefGoogle Scholar
  32. Langmuir, C.H., Klein, E.M., and Plank, T., Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges, in Mantle Flow and Melt Generation at Mid-Ocean Ridges, Phipps Morgan, J., Blackman, D.K., and Sinton, J.M., Geophys. Monogr. Ser., 1992, vol. 71, pp. 183–280.Google Scholar
  33. Lee, C.-T.A., Leeman, W.P., Canil, D., and Li, Z.-X.A., Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions, J. Petrol., 2005, vol. 46, pp. 2313–2336.CrossRefGoogle Scholar
  34. Lee, C.-T.A., Luffi, P., Plank, T., et al., Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas, Earth Planet. Sci. Lett., 2009, vol. 279, pp. 20–33.CrossRefGoogle Scholar
  35. Lee, C.-T.A., Luffi, P., Chin, E.J., et al., Copper systematics in arc magmas and implications for crust–mantle differentiation, Science, 2012, vol. 336, pp. 64–68.CrossRefGoogle Scholar
  36. Li, Y. and Audétat, A., Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt, Geochim. Cosmochim. Acta, 2015, vol. 162, pp. 25–45. doi 10.1016/j.gca.2015.04.036CrossRefGoogle Scholar
  37. Longerich, H.P., Jackson, S.E., and Gunther, D., Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation, J. Analyt. Atom. Spectrom., 1996, vol. 11, pp. 899–904.CrossRefGoogle Scholar
  38. Lorand, J.P., Are spinel lherzolite xenoliths representative of the abundance of sulfur in the upper mantle?, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1487–1492.CrossRefGoogle Scholar
  39. Matjuschkin, V., Blundy, J.D., and Brooker, R.A., The effect of pressure on sculpture speciation in mid-to deepcrustal arc magmas and implications for the formation of porphyry copper deposits, Contrib. Mineral. Petrol., 2016, vol. 171, no. 7, pp. 1–25.CrossRefGoogle Scholar
  40. Maurel, C. and Maurel, P., Experimental investigation of the crystallization of chromian spinel in basic silicate melts in the presence of olivine and clinopyroxene, Compt. Rend. L’academ. Sci., 1982, vol. 295, pp. 489–491.Google Scholar
  41. Mavrogenes, J.A. and O’Neill, H.S.C., The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 1173–1180.CrossRefGoogle Scholar
  42. Mironov, N.L. and Portnyagin, M.V., H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine, Russ. Geol. Geophys., 2011, vol. 52, no. 11, pp. 1353–1367.CrossRefGoogle Scholar
  43. Mironov, N., Portnyagin, M., Botcharnikov, R., et al., Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure, Earth Planet. Sci. Lett., 2015, vol. 425, pp. 1–11.CrossRefGoogle Scholar
  44. Mungall, J.E., Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 2002, vol. 30, pp. 915–918.CrossRefGoogle Scholar
  45. Nazarova, D.P., Portnyagin, M.V., Krasheninnikov, S.P., et al., Initial H2O Content and Conditions of Parent Magma Origin for Gorely Volcano (Southern Kamchatka) Estimated by Trace Element Thermobarometry, Dokl. Earth Sci., 2017, vol. 472, no. 1, pp. 100–103.Google Scholar
  46. Nikolaev, G. S., Ariskin, A. A., Barmina, G. S., Nazarov, M. A. and Almeev, R. R., Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel, Geochem. Int., 2016, vol. 54, no. 4, pp. 301–320.CrossRefGoogle Scholar
  47. Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., et al., Wulffite, K3NaCu4O2(SO4)4 and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia, Can. Mineral., 2014, vol. 52, pp. 699–716.CrossRefGoogle Scholar
  48. Ponomareva, V.V., Portnyagin M.V., Pendea, I.F., et al. A full holocene tephrochronology for the Kamchatsky Peninsula region: Applications from Kamchatka to North America, Quaternary Science Reviews, 2017, V. 168, p. 101–122.CrossRefGoogle Scholar
  49. Portnyagin, M.V., Mironov, N.L. and Nazarova, D.P., Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka, Petrology, 2017, vol. 25, no. 4, pp. 419–432.CrossRefGoogle Scholar
  50. Portnyagin, M., Bindeman, I., Hoernle, K., and Hauff, F., Geochemistry of primitive lavas of the Central Kamchatka depression: magmas generation at the edge of the pacific plate, volcanism and subduction: the Kamchatka region, Geophys. Monogr. Ser., 2007a, vol. 172, pp. 199–239.Google Scholar
  51. Portnyagin, M., Hoernle, K., Plechov, P., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka arc, Earth Planet. Sci. Lett., 2007b, vol. 255, pp. 53–69.CrossRefGoogle Scholar
  52. Portnyagin, M. and Manea, V.C., Mantle temperature control on composition of arc magmas along the Central Kamchatka depression, Geology, 2008, vol. 36, pp. 519–522.CrossRefGoogle Scholar
  53. Portnyagin, M., Hoernle, K., Storm, S., et al., H2O-rich melt inclusions in fayalitic olivine from Hekla Volcano: implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland, Earth Planet. Sci. Lett., 2012, vol. 357–358, pp. 337–346.CrossRefGoogle Scholar
  54. Portnyagin, M., Duggen, S., Hauff, F., et al., Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: quantitative modelling of subductionrelated open magmatic systems, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 133–155.CrossRefGoogle Scholar
  55. Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H., New clinopyroxene–liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River plain, Idaho, Am. Mineral., 2003, vol. 88, pp. 1542–1554.CrossRefGoogle Scholar
  56. Richards, J.P., The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny, Lithos, 2015, vol. 233, pp. 27–45.CrossRefGoogle Scholar
  57. Ryabchikov, I.D. and Kogarko, L.N., Redox potential of mantle magmatic systems, Petrology, 2010, vol. 18, no. 3, pp. 239–251.CrossRefGoogle Scholar
  58. Saal, A.E., Hauri, E.H., Langmuir, C.H., and Perfit, M.R., Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle, Nature, 2002, vol. 419, pp. 451–455.CrossRefGoogle Scholar
  59. Sadofsky, S.J., Portnyagin, M., Hoernle, K., and van den Bogaard, P., Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions, Contrib. Mineral. Petrol., 2008, vol. 155, pp. 433–456.CrossRefGoogle Scholar
  60. Salters, V.J.M. and Stracke, A., Composition of the depleted mantle, Geochem., Geophys., Geosyst., 2004, vol. 5, no. 5. doi 10.1029/2003GC000597Google Scholar
  61. Sobolev, A.V., Danyushevsky, L.V., Dmitriev, L.V., and Sushchevskaya, N.M., High-Alumina magnesian tholeite as the primary basalt magma at midocean ridge, Geochem. Int., 1989, vol. 26, pp. 128–133. Translated from Geokhimiya, 1988, no. 10, pp. 1522–1528.Google Scholar
  62. Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., Komatiites reveal a hydrous Archaean deep-mantle reservoir, Nature, 2016, vol. 531, pp. 628–632.CrossRefGoogle Scholar
  63. The Great Tolbachik fissure eruption: geological and geophysical data 1975–1976, Fedotov, S.P., Markhinin, Y.K. (Eds.), Cambridge Earth Science Series, 1983, Cambridge: Cambridge University Press, 1983Google Scholar
  64. Wallace, P.J., Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geotherm. Res., 2005, vol. 140, pp. 217–240.CrossRefGoogle Scholar
  65. Zhang, Z. and Hirschmann, M.M., Experimental constraints on mantle sulfide melting up to 8 GPa, Am. Mineral., 2016, vol. 101, pp. 181–192.CrossRefGoogle Scholar
  66. Zimmer, M.M., Plank, T., Hauri, E.H., et al., The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index, J. Petrol., 2010, vol. 51, pp. 2411–2444.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.GEOMAR Helmholtz Center for Ocean Research KielKielGermany

Personalised recommendations