Skip to main content
Log in

Coupling of Redox Conditions of Mantle Melting and Copper and Sulfur Contents in Primary Magmas of the Tolbachinsky Dol (Kamchatka) and Juan de Fuca Ridge (Pacific Ocean)

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The compositions of parental melts of Tolbachinsky Dol (Kamchatka) basalts were estimated from the compositions of olivine-hosted (Fo90.5-83.1) primitive melt inclusions in the rocks of the Northern breakthrough of the Great Tolbachik Fissure Eruption (1975 A.C.) and of the late-Holocene cone “1004”. The parental melts contain 100–150 ppm Cu and 0.16–0.30 wt % S. These concentrations are much higher than those determined for the initial magmas of mid-ocean ridge basalts (MORB), for example of the Juan de Fuca ridge (Cu = 55–105 ppm, S=0.09–0.12 wt %). Modeling of mantle melting under variable redox conditions demonstrated that the high Cu and S contents in the Tolbachinsky Dol melts can be obtained by 6–12% melting of DMM-like source under oxidized conditions (ΔQFM = +1.2 ± 0.1) and do not require a significant (>30–35% for S) subduction-related influx of these elements to the mantle source. The high contents of Cu and S in the Tolbachinsky Dol melts are largely explained by the increase of sulfide solubility in a silicate melt under oxidized conditions. In contrast, relatively reduced (ΔQFM ∼ 0) conditions of MORB generation result in low contents of Cu and S in their initial magmas. The estimated ΔQFM values agree well with the data obtained using the Cr-spinel–olivine oxybarometer. The high oxygen potential of Tolbachinsky Dol primary magmas is inherited by more evolved magmas, thus favouring Cu enrichment up to 270 ppm during magma fractionation, approaching maximum copper contents in the global systematics of island-arc rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 2012-13 Tolbachik eruption, B. Edwards, A. Belousov, M. Belousova, A. Volynets, L. Wilson (Eds), J. Volcanol. Geotherm. Res., 2015, V. 307, Special issue, (222 pp.).

  • Almeev, R.R., Holtz, F., Koepke, J., et al., The effect of H2O on olivine crystallization in MORB: experimental calibration at 200 MPa, Am. Mineral., 2007, vol. 92, pp. 670–674.

    Article  Google Scholar 

  • Ariskin, A.A. and Barmina, G.S., COMAGMAT: development of a magma crystallization model and its petrological applications, Geochem. Int. 2004, 42 (Suppl. 1), S1–S157.

    Google Scholar 

  • Ariskin, A.A., Danyushevsky, L.V., Bychkov, K.A., et al., Modeling solubility of Fe–Ni sulfides in basaltic magmas: the effect of nickel, Econ. Geol., 2013, vol. 108, pp. 1983–2003.

    Google Scholar 

  • Balesta, S.T. Zemnaya kora i magmaticheskie ochagi oblastei sovremennogo vulkanizma (Crust and Magmatic Chambers in the Areas of Modern Volcanism) Moscow: Nauka, 1981.

    Google Scholar 

  • Ballhaus, C., Berry, R.F., and Green, D.H., High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 27–40.

    Article  Google Scholar 

  • Beaudoin, Y., Scott, S.D., Gorton, M.P., et al., Pb and other ore metals in modem seafloor tectonic environments: evidence from melt inclusions, Mar. Geol., 2007, vol. 242, pp. 271–289.

    Google Scholar 

  • Borisov, A.A., Crystallization and stability of noble metal alloys in the magmatic process, Geol. Ore Deposits, 2005, vol. 47, no. 6, pp. 469–475.

    Google Scholar 

  • Borisov, A.A. and Shapkin, A.I., A new empirical equation rating Fe3+/Fe2+ in magmas to their composition, oxygen fugacity, and temperature, Geoch. Int., 1990, v. 27, n. 1, pp. 111–116. Translated from Geokhimiya, 1989, no. 6, pp. 892–897.

    Google Scholar 

  • Botcharnikov, R.E., Linnen, R.L., Wilke, M., et al., High gold concentrations in sulphide-bearing magma under oxidizing conditions, Nature Geosci., 2011, vol. 4, pp. 112–115.

    Article  Google Scholar 

  • Chiaradia, M., Copper enrichment in arc magmas controlled by overriding plate thickness, Nature Geosci., 2014, vol. 7, pp. 43–46.

    Article  Google Scholar 

  • Churikova, T., Dorendorf, F., and Worner, G., Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation, J. Petrol., 2001, vol. 42, pp. 1567–1593.

    Article  Google Scholar 

  • Cottrell, E. and Kelley, K.A., The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle, Earth Planet. Sci. Lett., 2011, vol. 305, pp. 270–282.

    Article  Google Scholar 

  • Danyushevsky, L.V., Della-Pasqua, F.N., and Sokolov, S., Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications, Contrib. Mineral. Petrol., 2000, vol. 138, pp. 68–83.

    Article  Google Scholar 

  • Danyushevsky, L.V., Perfit, M.R., Eggins, S.M., and Falloon, T.J., Crustal origin for coupled “ultra-depleted” and “plagioclase” signatures in MORB olivine-hosted melt inclusions: evidence from the Siqueiros transform fault, East Pacific Rise, Contrib. Mineral. Petrol., 2003, vol. 144, pp. 619–637.

    Article  Google Scholar 

  • Danyushevsky, L.V. and Plechov, P., Petrolog3: integrated software for modeling crystallization processes, Geochem., Geophys., Geosyst., 2011, vol. 12, no. 7. doi 10.1029/2011GC003516

    Google Scholar 

  • Dmitriev L.V., Sokolov S.Yu., and Plechova A.A. Statistical Assessment of Variations in the Compositional and P–T Parameters of the Evolution of Mid-Oceanic Ridge Basalts and Their Regional Distribution, Petrology, 2006, vol. 14, no. 3, pp. 209–229.

    Article  Google Scholar 

  • Evans, K.A., Elburg, M.A., and Kamenetsky, V.S., Oxidation state of subarc mantle, Geology, 2012, vol. 40, pp. 783–786.

    Article  Google Scholar 

  • Ford, C.E., Russel, D.G., Graven, J.A., and Fisk, M.R., Olivine–liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca, and Mn, J. Petrol., 1983, vol. 24, pp. 256–265.

    Article  Google Scholar 

  • Gale, A., Dalton, C.A., Langmuir, C.H., et al., The mean composition of ocean ridge basalts, Geochem., Geophys., Geosyst., 2013. doi 10.1029/2012GC004334

    Google Scholar 

  • GEOROC, Geochemistry of rocks of the oceans and continents, 2017, http://georoc.mpch-mainz.gwdg.de/georoc/Start.asp

  • Green, D.H., Falloon, T.J., and Taylor, W.R., Mantle derived magmas - role of variable source peridotite and variable C–H–O fluid compositions, in Magmatic Processes: Physicochemical Principles, Mysen, B.O., Ed., Geol. Soc. Sp. Publ., 1987, vol. 1, pp. 139–154.

    Google Scholar 

  • Jarosewich, E.J., Nelen, J.A., and Norberg, J.A., Reference samples for electron microprobe analysis, Geostand. Newslett., 1980, vol. 4, pp. 43–47.

    Article  Google Scholar 

  • Jégo, S. and Dasgupta, R., The fate of sulfur during fluidpresent melting of subducting basaltic crust at variable oxygen fugacity, J. Petrol., 2014, vol. 55, pp. 1019–1050.

    Article  Google Scholar 

  • Jenner, F.E. and O’Neill, H.S.C., Analysis of 60 elements in 616 ocean floor basaltic glasses, Geochem., Geophys., Geosyst., 2012, vol. 13, p. Q02005. doi 10.1029/2011GC004009

    Google Scholar 

  • Jochum, K.P., Stoll, B., Herwig, K., et al. MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios, Geochem., Geophys., Geosyst., 2006, vol. 7, Q02008. doi 10.1029/2005GC001060

    Article  Google Scholar 

  • Jugo, P.J., Wilke, M., and Botcharnikov, R.E., Sulfur Kedge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 5926–5938.

    Article  Google Scholar 

  • Kadik, A.A., Oxygen fugacity regime in the upper mantle as a reflection of the chemical differentiation of planetary materials, Geochem. Int., 2006, vol. 44, no. 1, pp. 56–71.

    Article  Google Scholar 

  • Kamenetsky, V.S., Davidson, P., Mernagh, T.P., et al., Fluid bubbles in melt inclusions and pillow–rim glasses: high-temperature precursors to hydrothermal fluids?, Chem. Geol., 2002, vol. 183, pp. 349–364.

    Article  Google Scholar 

  • Kamenetsky, V.S., Zelenski, M., Gurenko, A. et al., Silicate- sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage and fractionation of the silicate melt // Chem. Geol., 2017, vol. 471, pp. 92–110.

    Article  Google Scholar 

  • Kelley, K.A. and Cottrell, E., Water and the oxidation state of subduction zone magmas, Science, 2009, vol. 325, pp. 605–607.

    Article  Google Scholar 

  • Langmuir, C.H., Klein, E.M., and Plank, T., Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges, in Mantle Flow and Melt Generation at Mid-Ocean Ridges, Phipps Morgan, J., Blackman, D.K., and Sinton, J.M., Geophys. Monogr. Ser., 1992, vol. 71, pp. 183–280.

    Google Scholar 

  • Lee, C.-T.A., Leeman, W.P., Canil, D., and Li, Z.-X.A., Similar V/Sc systematics in MORB and arc basalts: implications for the oxygen fugacities of their mantle source regions, J. Petrol., 2005, vol. 46, pp. 2313–2336.

    Article  Google Scholar 

  • Lee, C.-T.A., Luffi, P., Plank, T., et al., Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas, Earth Planet. Sci. Lett., 2009, vol. 279, pp. 20–33.

    Article  Google Scholar 

  • Lee, C.-T.A., Luffi, P., Chin, E.J., et al., Copper systematics in arc magmas and implications for crust–mantle differentiation, Science, 2012, vol. 336, pp. 64–68.

    Article  Google Scholar 

  • Li, Y. and Audétat, A., Effects of temperature, silicate melt composition, and oxygen fugacity on the partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and silicate melt, Geochim. Cosmochim. Acta, 2015, vol. 162, pp. 25–45. doi 10.1016/j.gca.2015.04.036

    Article  Google Scholar 

  • Longerich, H.P., Jackson, S.E., and Gunther, D., Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation, J. Analyt. Atom. Spectrom., 1996, vol. 11, pp. 899–904.

    Article  Google Scholar 

  • Lorand, J.P., Are spinel lherzolite xenoliths representative of the abundance of sulfur in the upper mantle?, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1487–1492.

    Article  Google Scholar 

  • Matjuschkin, V., Blundy, J.D., and Brooker, R.A., The effect of pressure on sculpture speciation in mid-to deepcrustal arc magmas and implications for the formation of porphyry copper deposits, Contrib. Mineral. Petrol., 2016, vol. 171, no. 7, pp. 1–25.

    Article  Google Scholar 

  • Maurel, C. and Maurel, P., Experimental investigation of the crystallization of chromian spinel in basic silicate melts in the presence of olivine and clinopyroxene, Compt. Rend. L’academ. Sci., 1982, vol. 295, pp. 489–491.

    Google Scholar 

  • Mavrogenes, J.A. and O’Neill, H.S.C., The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas, Geochim. Cosmochim. Acta, 1999, vol. 63, pp. 1173–1180.

    Article  Google Scholar 

  • Mironov, N.L. and Portnyagin, M.V., H2O and CO2 in parental magmas of Kliuchevskoi volcano inferred from study of melt and fluid inclusions in olivine, Russ. Geol. Geophys., 2011, vol. 52, no. 11, pp. 1353–1367.

    Article  Google Scholar 

  • Mironov, N., Portnyagin, M., Botcharnikov, R., et al., Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure, Earth Planet. Sci. Lett., 2015, vol. 425, pp. 1–11.

    Article  Google Scholar 

  • Mungall, J.E., Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits, Geology, 2002, vol. 30, pp. 915–918.

    Article  Google Scholar 

  • Nazarova, D.P., Portnyagin, M.V., Krasheninnikov, S.P., et al., Initial H2O Content and Conditions of Parent Magma Origin for Gorely Volcano (Southern Kamchatka) Estimated by Trace Element Thermobarometry, Dokl. Earth Sci., 2017, vol. 472, no. 1, pp. 100–103.

    Google Scholar 

  • Nikolaev, G. S., Ariskin, A. A., Barmina, G. S., Nazarov, M. A. and Almeev, R. R., Test of the Ballhaus–Berry–Green Ol–Opx–Sp oxybarometer and calibration of a new equation for estimating the redox state of melts saturated with olivine and spinel, Geochem. Int., 2016, vol. 54, no. 4, pp. 301–320.

    Article  Google Scholar 

  • Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O., et al., Wulffite, K3NaCu4O2(SO4)4 and parawulffite, K5Na3Cu8O4(SO4)8, two new minerals from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia, Can. Mineral., 2014, vol. 52, pp. 699–716.

    Article  Google Scholar 

  • Ponomareva, V.V., Portnyagin M.V., Pendea, I.F., et al. A full holocene tephrochronology for the Kamchatsky Peninsula region: Applications from Kamchatka to North America, Quaternary Science Reviews, 2017, V. 168, p. 101–122.

    Article  Google Scholar 

  • Portnyagin, M.V., Mironov, N.L. and Nazarova, D.P., Copper partitioning between olivine and melt inclusions and its content in primitive island-arc magmas of Kamchatka, Petrology, 2017, vol. 25, no. 4, pp. 419–432.

    Article  Google Scholar 

  • Portnyagin, M., Bindeman, I., Hoernle, K., and Hauff, F., Geochemistry of primitive lavas of the Central Kamchatka depression: magmas generation at the edge of the pacific plate, volcanism and subduction: the Kamchatka region, Geophys. Monogr. Ser., 2007a, vol. 172, pp. 199–239.

    Google Scholar 

  • Portnyagin, M., Hoernle, K., Plechov, P., et al., Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka arc, Earth Planet. Sci. Lett., 2007b, vol. 255, pp. 53–69.

    Article  Google Scholar 

  • Portnyagin, M. and Manea, V.C., Mantle temperature control on composition of arc magmas along the Central Kamchatka depression, Geology, 2008, vol. 36, pp. 519–522.

    Article  Google Scholar 

  • Portnyagin, M., Hoernle, K., Storm, S., et al., H2O-rich melt inclusions in fayalitic olivine from Hekla Volcano: implications for phase relationships in silicic systems and driving forces of explosive volcanism on Iceland, Earth Planet. Sci. Lett., 2012, vol. 357–358, pp. 337–346.

    Article  Google Scholar 

  • Portnyagin, M., Duggen, S., Hauff, F., et al., Geochemistry of the Late Holocene rocks from the Tolbachik volcanic field, Kamchatka: quantitative modelling of subductionrelated open magmatic systems, J. Volcanol. Geotherm. Res., 2015, vol. 307, pp. 133–155.

    Article  Google Scholar 

  • Putirka, K.D., Mikaelian, H., Ryerson, F., and Shaw, H., New clinopyroxene–liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River plain, Idaho, Am. Mineral., 2003, vol. 88, pp. 1542–1554.

    Article  Google Scholar 

  • Richards, J.P., The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny, Lithos, 2015, vol. 233, pp. 27–45.

    Article  Google Scholar 

  • Ryabchikov, I.D. and Kogarko, L.N., Redox potential of mantle magmatic systems, Petrology, 2010, vol. 18, no. 3, pp. 239–251.

    Article  Google Scholar 

  • Saal, A.E., Hauri, E.H., Langmuir, C.H., and Perfit, M.R., Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle, Nature, 2002, vol. 419, pp. 451–455.

    Article  Google Scholar 

  • Sadofsky, S.J., Portnyagin, M., Hoernle, K., and van den Bogaard, P., Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions, Contrib. Mineral. Petrol., 2008, vol. 155, pp. 433–456.

    Article  Google Scholar 

  • Salters, V.J.M. and Stracke, A., Composition of the depleted mantle, Geochem., Geophys., Geosyst., 2004, vol. 5, no. 5. doi 10.1029/2003GC000597

    Google Scholar 

  • Sobolev, A.V., Danyushevsky, L.V., Dmitriev, L.V., and Sushchevskaya, N.M., High-Alumina magnesian tholeite as the primary basalt magma at midocean ridge, Geochem. Int., 1989, vol. 26, pp. 128–133. Translated from Geokhimiya, 1988, no. 10, pp. 1522–1528.

    Google Scholar 

  • Sobolev, A.V., Asafov, E.V., Gurenko, A.A., et al., Komatiites reveal a hydrous Archaean deep-mantle reservoir, Nature, 2016, vol. 531, pp. 628–632.

    Article  Google Scholar 

  • The Great Tolbachik fissure eruption: geological and geophysical data 1975–1976, Fedotov, S.P., Markhinin, Y.K. (Eds.), Cambridge Earth Science Series, 1983, Cambridge: Cambridge University Press, 1983

  • Wallace, P.J., Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data, J. Volcanol. Geotherm. Res., 2005, vol. 140, pp. 217–240.

    Article  Google Scholar 

  • Zhang, Z. and Hirschmann, M.M., Experimental constraints on mantle sulfide melting up to 8 GPa, Am. Mineral., 2016, vol. 101, pp. 181–192.

    Article  Google Scholar 

  • Zimmer, M.M., Plank, T., Hauri, E.H., et al., The role of water in generating the calc-alkaline trend: new volatile data for Aleutian magmas and a new tholeiitic index, J. Petrol., 2010, vol. 51, pp. 2411–2444.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Mironov.

Additional information

Original Russian Text © N.L. Mironov, M.V. Portnyagin, 2018, published in Petrologiya, 2018, Vol. 26, No. 2, pp. 140–162.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, N.L., Portnyagin, M.V. Coupling of Redox Conditions of Mantle Melting and Copper and Sulfur Contents in Primary Magmas of the Tolbachinsky Dol (Kamchatka) and Juan de Fuca Ridge (Pacific Ocean). Petrology 26, 145–166 (2018). https://doi.org/10.1134/S0869591118020030

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591118020030

Navigation