, Volume 25, Issue 4, pp 433–447 | Cite as

Genesis of kalsilite melilitite at Cupaello, Central Italy: Evidence from melt inclusions

  • A. T. IsakovaEmail author
  • L. I. Panina
  • F. Stoppa


The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anders, E. and Grevesse, N., Abundances of the elements: meteoritic and solar, Geochim. Cosmochim. Acta, 1989, vol. 53, pp. 197–214.CrossRefGoogle Scholar
  2. Andreeva I.A. Silicate, silicate–salt, and salt magmas of the Mushugai–Khuduk alkaline carbonatized complex, Southern Mongolia: melt inclusion data, Extended Abstract of Cand. Sci. (Geol.-Min.), Moscow: IGEM RAN, 2000.Google Scholar
  3. Bell, K., Castorina, F., Rosatelli, G., and Stoppa, F., Plume activity, magmatism, and the geodynamic evolution of the central Mediterranean, Ann. Geophys., 2006, vol. 49, no. 1, pp. 357–371.Google Scholar
  4. Bell, K., Lavecchia, G., and Rosatelli, G., Cenozoic Italian magmatism—isotope constraints for possible plume-related activity, J. S. Amer. Earth Sci., 2013, vol. 41, pp. 22–40. doi 10.1016/j.jsames.2012.10.005CrossRefGoogle Scholar
  5. Boari, E., Tommasini, S., Laurenzi, M.A., and Conticelli, S., Transition from ultrapotassic kamafugitic to sub-alkaline magmas: Sr, Nd, and Pb isotope, trace element and 40Ar–39Ar age data from the Middle Latin Valley volcanic field, Roman magmatic province, Central Italy, J. Petrol., 2009, vol. 50, no. 7, pp. 1327–1357. doi 10.1093/petrology/egp003CrossRefGoogle Scholar
  6. Borodin, L.S., Glavneishie provintsii i formatsii shchelochnykh porod (Major Provinces and Associations of Alkaline Rocks), Moscow: Nauka, 1974.Google Scholar
  7. Carminati, E., Lustrino, M., and Doglioni, C., Geodynamic evolution of the central and western Mediterranean: tectonics vs igneous petrology constraints, Tectonophysics, 2012, vol. 579, pp. 173–192. doi 10.1016/j.tecto.2012.01.026CrossRefGoogle Scholar
  8. Castorina, F., Stoppa, F., Cundari, A., and Barbieri, M., An enriched mantle source for Italy’s melilitite–carbonatite association as inferred by its Nd-Sr isotope signature, Mineral. Mag., 2000, vol. 64, pp. 625–639. doi 10.1180/002646100549652CrossRefGoogle Scholar
  9. Conticelli, S., D’Antonio, M., Pinarelli, L., and Civetta, L., Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman province and southern Tuscany, Mineral. Petrol., 2002, vol. 74, pp. 223–252. doi 10.1007/s007100200004CrossRefGoogle Scholar
  10. Cundari, A. and Ferguson, A.K., Petrogenetic relationships between melilitite and lamproite in Roman comagmatic region: the lavas of S. Venanzo and Cupaello, Contrib. Mineral. Petrol., 1991, vol. 107, pp. 343–357. doi 10.1007/BF00325103CrossRefGoogle Scholar
  11. Cundari, A., Role of subduction in the genesis of potassic basaltic rocks: a discussion paper on the unfashionable side of the role, Mineral. Petrograph. Acta, 1994, vol. 37, pp. 81–90.Google Scholar
  12. Dawson, J.B., Smith, J.V., and Steele, I.M., Combeite (Na2.33Ca1.74O0.12)Si3O9 from Oldoinyo Lengai, Tanzania, J. Geol., 1989, vol. 97, pp. 365–372.Google Scholar
  13. Deer W.A., Howie, R.A., and Zussman, J., Rock Forming Minerals. Vol. 2. Chain Silicates, London: Longmans, 1963.Google Scholar
  14. Deer W.A., Howie, R.A., and Zussman, J., Rock Forming Minerals. Vol. 4. Framework Silicates, London: Longmans, 1963.Google Scholar
  15. Foley, S. and Peccerillo, A., Potassic and ultrapotassic magmas and their origin, Lithos, 1992, vol. 28, pp. 181–185.CrossRefGoogle Scholar
  16. Foley, S., Venturelli, G., Green, D.H., and Toscani, L., The ultrapotassic rocks: characteristics, classification, and constraints for petrogenetic models, Earth Sci. Rev., 1987, vol. 24, pp. 81–134.CrossRefGoogle Scholar
  17. Gasperini, D., Blichert-Toft, J., Bosch, D., et al., Upwelling of deep mantle material through a plate window: evidence from the geochemistry of Italian basaltic volcanics, J. Geophys. Res., 2002, vol. 107, pp. 2367–2371. doi 10.1029/2001JB000418CrossRefGoogle Scholar
  18. Guarino, V., Wu, F.Y., Lustrino, M., et al., U–Pb ages, Sr–Nd-isotope geochemistry, and petrogenesis of kimberlites, kamafugites and phlogopite-picrites of the Alto Paranaíbá igneous province, Brazil, Chem. Geol., 2013, vol. 353, pp. 65–82. doi 10.1016/j.chemgeo.2012.06.016CrossRefGoogle Scholar
  19. Hamilton, D.L. and Kjarsgaard, B.A., The immiscibility of silicate and carbonate liquids, S. Afr. J. Geol., 1993, vol. 96, pp. 139–142.Google Scholar
  20. Kostyuk, V.P., Panina, L.I., Zhidkov, A.Ya., et al., Kalievyi shchelochnoi magmatizm Baikalo-Stanovoi riftogennoi sistemy (Potassic Alkaline Magmatism of the Baikal–Stanovoy Rift System), Novosibirsk: Nauka, 1990.Google Scholar
  21. Laurenzi, M., Stoppa, F., and Villa, I., Eventi ignei monogenici e depositi piroclastici nel Distretto Ultra-Alcalino Umbro-laziale (ULUD): revisione, aggiornnamento e comparazione dei dati cronologici, Plinius, 1994, vol. 12, pp. 61–65.Google Scholar
  22. Lavecchia, G., Stoppa, F., and Creati, N., Carbonatites and kamafugites in Italy: mantle-derived rocks that challenge subduction, Ann. Geophys., 2006, vol. 49, no. 1, pp. 389–402.Google Scholar
  23. Lavecchia, G. and Bell, K., Magmatectonic zonation of Italy: a tool to understanding Mediterranean geodynamics, in Updates in Volcanology: a Comprehensive Approach to Volcanological Problems, Stoppa, F., Ed., Intech-Open Access Publisher, 2012, pp. 153–178.Google Scholar
  24. Martin, L.H.J., Schmidt, M.W., Mattisson, H.B., et al., Element partitioning between immiscible carbonatite–kamafugite melts with application to the Italian ultrapotassic suite, Chem. Geol., 2012, vol. 320–321, pp. 96–112. doi 10.1016/j.chemgeo.2012.05.019CrossRefGoogle Scholar
  25. McDonough, W.F. and Sun, S.S., The composition of the Earth, Chem. Geol., 1995, vol. 120, pp. 96–112.CrossRefGoogle Scholar
  26. Melluso, L., Lustrino, M., Ruberti, E., et al., Major- and trace-element composition of olivine perovskite, clinopyroxene, Cr–Fe–Ti oxides, phlogopites and host kamafugite and kimberlites Alto Paranaíbá, Brazil, Can. Mineral., 2008, vol. 46, pp. 19–40. doi 10.3749/canmin.46.1.19CrossRefGoogle Scholar
  27. Morimoto, N., Nomenclature of pyroxenes. Subcommittee on pyroxenes. Commission on new minerals and mineral names, Can. Mineral., 1989, vol. 27, pp. 143–156.Google Scholar
  28. Naumov, V.B., Kamenetsky, V.S., Thomas, R., et al., Inclusions of silicate and sulfate melts in chrome diopside from the Inagli Deposit, Yakutia, Russia, Geochem. Int. 2008, vol. 46, no. 6, pp. 554–564.CrossRefGoogle Scholar
  29. Nielsen, T.F.D., Solovova, I.P., and Veksler, I.V., Parental melts of melilitolite and origin of alkaline carbonatites: evidence from crystallised melt inclusions, Gardiner complex, Contrib. Mineral. Petrol., 1997, vol. 126, p. 331–344. doi 10.1007/s004100050254CrossRefGoogle Scholar
  30. Panina, L.I., Multiphase carbonate–salt immiscibility in carbonatite melts: data on melt inclusions from the Krestovskiy massif minerals (Polar Siberia), Contrib. Mineral. Petrol., 2005, vol. 150, pp. 19–36.CrossRefGoogle Scholar
  31. Panina, L.I. and Usol’tseva, L.M., Alkaline high-Ca sulfate–carbonate melt inclusions in melilite–monticellite–olivine rocks from the Malomurunskii Alkaline Massif, Petrology, 1999, vol. 7, no. 6, pp. 610–625.Google Scholar
  32. Panina, L.I. and Motorina, I.V., Liquid immiscibility in deep-seated magmas and the generation of carbonatite melts, Geochem. Int., 2008, vol. 46, no. 5, pp. 448–464.CrossRefGoogle Scholar
  33. Panina, L.I., Sazonov, A.M., and Usol’tseva, L.M., Melilite- and monticellite-bearing rocks of the Krestovskaya Intrusion (northern Siberian Platform) and their genesis, Russ. Geol. Geophys., 2001, vol. 42, no. 9, pp. 1243–1263.Google Scholar
  34. Panina, L.I., Stoppa, F., and Usol’tseva, L.M., Genesis of melilitite rocks of Pian di Celle Volcano, Umbrian Kamafugite Province, Italy: evidence from melt inclusions in minerals, Petrology, 2003, vol. 11, no. 4, pp. 365–382.Google Scholar
  35. Panina, L.I., Nikolaeva, A.T., and Stoppa, F., Genesis of melilitolites from Colle Fabbri: inferences from melt inclusions, Mineral. Petrol., 2013, vol. 107, pp. 897–914. doi 10.1007/s00710-013-0268-4CrossRefGoogle Scholar
  36. Peccerillo, A., Potassic and ultrapotassic rocks: compositional characteristics, petrogenesis, and geological significance, Episodes, 1992, vol. 15, no. 4, pp. 243–251.Google Scholar
  37. Peccerillo, A., Plio–Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics, Heidelberg: Springer, 2005.Google Scholar
  38. Roedder, E., A reconnaissance of liquidus relations in the system K2O · 2SiO2–FeO–SiO2, Am. J. Sci., 1952, Bowen vol. Part 2, pp. 435–456.Google Scholar
  39. Samoylov, V.S., Kovalenko, V.I., Naumov, V.B., et al., Immiscibility of silicate and salt melts in the formation of the Mushugai-Kuduk alkali complex, South Mongolia, Geochem. Int., 1989, vol. 26, no. 5, pp. 61–72.Google Scholar
  40. Schmidt, K.H., Bottazzi, P., Vannucci, R., and Mengel, K., Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt, Earth Planet Sci. Lett., 1999, vol. 168, pp. 287–299. doi 10.1016/S0012-821X(99)00056-4CrossRefGoogle Scholar
  41. Serri, G., Neogene–Quaternary magmatic activity and its geodynamic implications in the central Mediterranean region, Geodynamics, 1997, vol. 40, pp. 681–703. doi 10.4401/ag-3896Google Scholar
  42. Sgarbi, P.B.A. and Gaspar, J.C., Geochemistry of Santo Antônio da Barra kamafugites, Goiás, Brazil, J. S. Amer. Earth Sci., 2002, vol. 14, p. 889–901. doi 10.1016/S0895-9811(01)00079-7CrossRefGoogle Scholar
  43. Sharygin, V.V., Kamenetsky, V.S., Zaitsev, A.N., and Kamenetsky, M.B., Silicate-natrocarbonatite liquid immiscibility in 1917 eruption combeite–wollastonite nephelinite, Oldoinyo Lengai volcano, Tanzania: melt inclusion study, Lithos, 2012, vol. 152, pp. 23–39. doi 10.1016/j.lithos.2012.01.021CrossRefGoogle Scholar
  44. Sobolev, A.V., Melt inclusions in minerals as a source of principle petrological information, Petrology, 1996, vol. 4, no. 3, pp. 209–220.Google Scholar
  45. Solovova, I.P., Girnis, A.V., Ganeev, I.I., et al., Conditions of generation and crystallization of high-potassium magmas, in Lamproity (Lamproites), Bogatikov, O.A. and Kononova, V.A., Ed., Moscow: Nauka, 1991, pp. 218–276.Google Scholar
  46. Solovova, I.P., Girnis, A.V., Kogarko, L.N., et al., Compositions of magmas and carbonate-silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy, Lithos, 2005, vol. 85, pp. 113–128. doi 10.1016/j.lithos.2005.03.022CrossRefGoogle Scholar
  47. Solovova, I.P., Onenstetter, D., and Girnis, A.V., Melt inclusions in olivine from the boninites of New Caledonia: postentrapment melt modification and estimation of primary magma compositions, Petrology, 2012, vol. 20, no. 6, pp. 529–544.CrossRefGoogle Scholar
  48. Stoppa, F. and Cundari, A., A new Italian carbonatite occurrence at Cupaello (Rieti) and its genetic significance, Contrib. Mineral. Petrol., 1995, vol. 122, pp. 275–288. doi 10.1007/s004100050127CrossRefGoogle Scholar
  49. Stoppa, F., Cundari, A., Rosatelli, A., and Woolley, A.R., Leucite melilitolites in Italy: genetic aspects and relationships with associated alkaline rocks and carbonatites, Period. Mineral., 2003, vol. 72, pp. 223–251.Google Scholar
  50. Stoppa, F. and Lavecchia, G., Late Pleistocene ultra-alkaline magmatic activity in the Umbria–Latium region (Italy): an overview, J. Volcanol. Geotherm. Res., 1992, vol. 52, pp. 277–293. doi 10.1016/0377-0273(92)90049-JCrossRefGoogle Scholar
  51. Stoppa, F. and Schiazza, M., An overview of monogenetic carbonatitic magmatism from Uganda, Italy, China and Spain: volcanologic and geochemical features, J. S. Amer. Earth Sci., 2013, vol. 41, pp. 140–159. doi 10.1016/j.jsames.2012.10.004CrossRefGoogle Scholar
  52. Stoppa, F. and Sharygin, V.V., Melilitolite intrusion and pelite digestion by high temperature kamafugitic magma at Colle Fabbri, Spoleto, Italy, Lithos, 2009, vol. 112, pp. 306–320. doi 10.1016/j.lithos.2009.03.001CrossRefGoogle Scholar
  53. Stoppa, F., Sharygin, V.V., and Cundari, A., New mineral data from the kamafugite–carbonatite association: the melilitolite from Pian di Celle, Italy, Mineral. Petrol., 1997, vol. 61, pp. 27–45. doi 10.1007/BF01172476CrossRefGoogle Scholar
  54. Suk, N.I., Experimental investigation of carbonate–silicate liquid immiscibility with applications to the formation of barium–strontium carbonatites, Petrology, 2003, vol. 11, no. 4, pp. 400–405.Google Scholar
  55. Turi, B., Taylor, H.P., and Ferrara, G., A criticism of the Holm–Munksgaard oxygen and strontium isotope study of the Vulsinian district, Central Italy, Earth Planet. Sci. Lett., 1986, vol. 78, pp. 447–453.CrossRefGoogle Scholar
  56. Veksler, I.V., Dorfman, A.M., Dulski, P., et al., Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite, Geochim. Cosmochim. Acta, 2012, vol. 79, pp. 20–40.CrossRefGoogle Scholar
  57. Yoder, H.S. and Tilley, C.E., Origin of basalt magmas: an experimental study of natural and synthetic rock system, J. Petrol., 1962, vol. 3, pp. 342–532.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Dipartimento di ScienzeDiSPUTerUniversità G.d’AnnunzioChieti Scalo (CH)Italy

Personalised recommendations