Skip to main content
Log in

Geochemistry and oxygen isotopic composition of olivine in kimberlites from the Arkhangelsk province: Contribution of mantle metasomatism

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents data on the composition of olivine macrocrysts from two Devonian kimberlite pipes in the Arkhangelsk diamond province: the Grib pipe (whose kimberlite belongs to type I) and Pionerskaya pipe (whose kimberlite is of type II, i.e., orangeite). The dominant olivine macrocrysts in kimberlites from the two pipes significantly differ in geochemical and isotopic parameters. Olivine macrocrysts in kimberlite from the Grib pipe are dominated by magnesian (Mg# = 0.92–0.93), Ti-poor (Ti < 70 ppm) olivine possessing low Ti/Na (0.05–0.23), Zr/Nb (0.28–0.80), and Zn/Cu (3–20) ratios and low Li concentrations (1.2–2.0 ppm), and the oxygen isotopic composition of this olivine δ18O = 5.64‰ is higher than that of olivine in mantle peridotites (δ18O = 5.18 ± 0.28‰). Olivine macrocrysts in kimberlite from the Pionerskaya pipe are dominated by varieties with broadly varying Mg# = 0.90–0.93, high Ti concentrations (100–300 ppm), high ratios Ti/Na (0.90–2.39), Zr/Nb (0.31–1.96), and Zn/Cu (12–56), elevated Li concentrations (1.9–3.4 ppm), and oxygen isotopic composition δ18O = 5.34‰ corresponding to that of olivine in mantle peridotites. The geochemical and isotopic traits of low-Ti olivine macrocrysts from the Grib pipe are interpreted as evidence that the olivine interacted with carbonate-rich melts/fluids. This conclusion is consistent with the geochemical parameters of model melt in equilibrium with the low-Ti olivine that are similar to those of deep carbonatite melts. Our calculations indicate that the variations in the δ18O of the olivine relative the “mantle range” (toward both higher and lower values) can be fairly significant: from 4 to 7‰ depending on the composition of the carbonate fluid. These variations were formed at interaction with carbonate fluid, whose δ18O values do not extend outside the range typical of mantle carbonates. The geochemical parameters of high-Ti olivine macrocrysts from the Grib pipe suggest that their origin was controlled by the silicate (water–silicate) component. This olivine is characterized by a zoned Ti distribution, with the configuration of this distribution between the cores of the crystals and their outer zones showing that the zoning of the cores and outer zones is independent and was produced during two episodes of reaction interaction between the olivine and melt/fluid. The younger episode (when the outer zone was formed) likely involved interaction with kimberlite melt. The transformation of the composition of the cores during the older episode may have been of metasomatic nature, as follows from the fact that the composition varies from grain to grain. The metasomatic episode most likely occurred shortly before the kimberlite melt was emplaced and was related to the partial melting of pyroxenite source material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Achterbergh, E., Griffin, W.L., Ryan, C.G., et al., Subduction signature for quenched carbonatites from the deep lithosphere, Geology, 2002, vol. 30, no. 8, pp. 743–746.

    Article  Google Scholar 

  • Arkhangel’skaya almazonosnaya provintsiya (Arkhangelsk Diamondiferous Province), Bogatikov, O.A., Eds., Moscow: Izd-vo MGU, 1999.

  • Arndt, N.T., Guitreau, M., Boullier, A.M., et al., Olivine and the origin of kimberlite, J. Petrol., 2010, vol. 51, pp. 573–602.

    Article  Google Scholar 

  • Arzamastsev, A.A., Bea, F., Arzamastseva, L.V., and Montero, P., Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series: LA-ICP-MS data for the magmatic provinces of Northeastern Fennoscandia and Germany, Petrology, 2009, vol. 17, no. 1, pp. 47–72.

    Article  Google Scholar 

  • Barnes, S-J. and Maier, W.D., The fractionation of Ni, Cu and the noble metals in silicate and sulfide liquids, Dynamic Processes in Magmatic Ore Deposits and their Application, in Mineral Exploration, Keays, R.R., Lesher, C.M., Lightfoot, P.C., and Farrow, C.E.G., Eds., Geol. Assoc. Can., Short Course Notes, 1999, vol. 13, pp. 69–106.

    Google Scholar 

  • Batanova, V.G., Sobolev, A.V., and Kuzmin, D.V., Trace element analysis of olivine: high precision analytical method for JEOL JXA-8230 electron probe microanalyser, Chem. Geol., 2015, pp. 149–157.

    Google Scholar 

  • Beard, A.D., Downes, H., and Hegner, E., Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 288–303.

    Article  Google Scholar 

  • Beard, A.D., Downes, H., Hegner, E., et al., Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NW Russia: evidence for transitional kimberlite magma types, Lithos, 2000, vol. 51, nos. 1–2, pp. 47–73.

    Article  Google Scholar 

  • Becker, M. and Le Roex, A.P., Geochemistry of South African on-and off-craton, group I and group II kimberlites: petrogenesis and source region evolution, J. Petrol., 2006, pp. 673–703.

    Google Scholar 

  • Berry, A., Hermann, J., O’Neill, H.St.C., and Foran, G.J., Finger printing the water site in mantle olivine, Geology, 2007, vol. 33, pp. 869–872.

    Article  Google Scholar 

  • Bogatikov, O.A., Kononova, V.A., Nosova, A.A., and Kondrashov, I.A., Kimberlites and lamproites of the East European Platform: petrology and geochemistry, Petrology, 2007, vol. 16, no. 4, pp. 315–334.

    Article  Google Scholar 

  • Bogatikov, O.A., Kononova, V.A., Dubinina, E.O., et al., Nature of carbonates from kimberlites of the Zimnii Bereg Field, Arkhangelsk: evidence from Rb–Sr, C, and O isotope data, Dokl. Earth Sci., 2008, vol. 420, no. 6, pp. 808–812.

    Google Scholar 

  • Brett, R.C., Russell, J.K., and Moss, S., Origin of olivine in kimberlite: phenocryst or imposter, Lithos, 2009, vol. 1125, pp. 201–212.

    Article  Google Scholar 

  • Bussweiler, Y., Foley, S.F., Prelević, D., and Jacob, D.E., The olivine macrocryst problem: new insights from minor and trace element compositions of olivine from Lac de Gras kimberlites, Canada, Lithos, 2015, vol. 220–223, pp. 238–252.

    Google Scholar 

  • Chacko, T., Cole, D.R., and Horita, J., Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geological systems, in Stable Isotope Geochemistry, Valley J.W. and Cole D.R., Eds., Rev. Mineral, 2001, vol. 43, pp. 1–81.

    Google Scholar 

  • Chakhmouradian, A.R., High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites, Chem. Geol., 2006, vol. 235, pp. 138–160.

    Article  Google Scholar 

  • Cherniak, D.J. and Liang, Y., Titanium diffusion in olivine, Geochim. Cosmochim. Acta, 2014, vol. 147, pp. 43–57.

    Article  Google Scholar 

  • Clement, C.R., A comparative geological study of some major kimberlite pipes in the Northern Cape and Orange Free State, PhD thesis. University of Cape Town, Cape Town, South Africa, 1982.

    Google Scholar 

  • Coplen, T.B., Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (Technical Report), Pure Appl. Chem., 1994, vol. 66, pp. 707–712.

    Article  Google Scholar 

  • Cordier, C., Sauzeat, L., Arndt, N.T., et al., Metasomatism of the lithospheric mantle immediately precedes kimberlite eruption: new evidence from olivine composition and microstructures, J. Petrol., 2015, vol. 56, no. 9, pp. 1775–1796.

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M.M., McDonough, W.F., et al., Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantlederived melts, Chem. Geol., 2009, vol. 262, pp. 57–77.

    Article  Google Scholar 

  • Dasgupta, R., Mallik, A., Tsuno, K., et al., Carbon–dioxide-rich silicate melt in the Earth’s upper mantle, Nature, 2013, vol. 493, pp. 211–215.

    Article  Google Scholar 

  • Davis, F.A., Humayun, M., Hirschmann, M.M., and Cooper, R.S., Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa, Geochim. Cosmochim. Acta, 2013, vol. 104, pp. 232–260.

    Article  Google Scholar 

  • Dawson, J.B., Kimberlites and Their Xenoliths, Berlin, Heidelberg: Springer Berlin Heidelberg, 1980.

    Book  Google Scholar 

  • De Hoog, J.C., Gall, L., and Cornell, D.H., Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 2010, vol. 270, pp. 196–215.

    Article  Google Scholar 

  • Eiler, J.M., Oxygen isotope variations of basaltic lavas and upper mantle rocks, in Stable Isotope Geochemistry, Rev. Mineral. Geochem., 2001, vol. 43, pp. 319–364.

    Article  Google Scholar 

  • Fleet, M.E. and Stone, W.E., Nickeliferous sulfides in xenoliths, olivine megacrysts and basaltic glass, Contrib. Mineral. Petrol., 1990, vol. 105, pp. 629–636.

    Article  Google Scholar 

  • Foley, S., Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic alkaline magmas, Lithos, 1992, vol. 28, pp. 435–453.

    Article  Google Scholar 

  • Foley, S.F., Prelevic, D., Rehfeldt, T., and Jacob, D.E., Minor and trace elements in olivines as probes into early igneous and mantle melting processes, Earth Planet Sci. Lett., 2013, vol. 363, pp. 181–191.

    Article  Google Scholar 

  • Girnis, A.V., Bulatov, V.K., Brey, G.P., et al., Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis, Lithos, 2013, vol. 160–161, pp. 183–200.

    Google Scholar 

  • Giuliani, A., Phillips, D., Woodhead, J.D., et al., Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?, Nat. Commun, 2015, vol. 6, p. 6837.

    Article  Google Scholar 

  • Golubkova, A.B., Nosova, A.A., and Larionova, Yu.O., Mg-ilmenite megacrysts from the Arkhangelsk kimberlites, Russia: genesis and interaction with kimberlite melt and postkimberlite fluid, Geochem. Int., 2013, vol. 51, no. 5, pp. 421–441.

    Article  Google Scholar 

  • Hermann, J., O’Neill, H., and Berry, A., Titanium solubility in olivine in the system TiO2–MgO–SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine, Contrib. Mineral. Petrol., 2005, vol. 148, pp. 746–760.

    Article  Google Scholar 

  • Huang, J-X., Griffin, W.L., Greau, Y., et al., Unmasking xenolithic eclogites: progressive metasomatism of a key Roberts Victor sample, Chem. Geol., 2014, vol. 364, pp. 56–65.

    Article  Google Scholar 

  • Ionov, D.A., Prikhodko, V.S., Bodinier, J.L., et al., Lithospheric mantle beneath the south-eastern Siberian Craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik, Contrib. Mineral. Petrol., 2005, vol. 149, pp. 647–665.

    Article  Google Scholar 

  • Jacobs, D.A.B., Orthopyroxene stability within kimberlite magma: an experimental investigation, MSc thesis, University of Stellenbosch, 2012, p. 56.

    Google Scholar 

  • Jochum, K.P., Weis, U., Stoll, B., et al., Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines, Geostand. Geoanal. Res., 2011, vol. 35, no. 4, p. 397.

    Article  Google Scholar 

  • Kamenetsky, V., Kamenetsky, M., Sobolev, A., et al., Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins, J. Petrol., 2008, vol. 49, pp. 823–839.

    Article  Google Scholar 

  • Kamenetsky, V.S., Golovin, A.V., Maas, R., et al., Towards a new model for kimberlite petrogenesis: evidence from unaltered kimberlites and mantle minerals, Earth Sci. Rev., 2014, vol. 139, pp. 145–167.

    Article  Google Scholar 

  • Kargin, A.V., Sazonova, L.V., Nosova, A.A., et al., Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk diamond province, Russia: texture, composition, and origin, Geoscience Front., 2016. doi 10.1016/j.gsf.2016.03.001

    Google Scholar 

  • Kargin, A.V., Nosova, A.A., Larionova, Yu.O., et al., Mesoproterozoic orangeites (kimberlites II) of West Karelia: mineralogy, geochemistry, and Sr–Nd isotope composition, Petrology, 2014, vol. 22, no. 2, pp. 151–183.

    Article  Google Scholar 

  • Kononova, V.A., Nosova, A.A., Pervov, V.A., and Kondrashov, I.A., Mesoproterozoic orangeites (kimberlites II) of West Karelia: mineralogy, geochemistry, and Sr–Nd isotope composition, Dokl. Earth Sci., 2006, vol. 409, pp. 952–957.

    Article  Google Scholar 

  • Kononova, V.A., Golubeva, Yu.Yu., Bogatikov, O.A., and Kargin, A.V., Diamond resource potential of kimberlites from the Zimny Bereg Field, Arkhangel’sk Oblast, Geol. Ore Deposits, 2007, vol. 49, no. 6, pp. 483–505.

    Article  Google Scholar 

  • Kopylova, M.G., Matveev, S., and Raudsepp, M., Searching for parental kimberlite melt, Geochim Cosmochim. Acta, 2007, vol. 71, pp. 3616–3629.

    Article  Google Scholar 

  • Kopylova, M.G., Nowell, G.M., Pearson, D.G., and Markovic, G., Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high-Cr megacrysts in the Jericho kimberlite, Lithos, 2009, vol. 112, Suppl. 1, pp. 284–295.

    Google Scholar 

  • Kostrovitsky, S.I., Malkovets, V.G., Verichev, E.M., et al., Megacrysts from the Grib kimberlite pipe (Arkhangelsk province, Russia), Lithos, 2004, vol. 77, pp. 511–523.

    Article  Google Scholar 

  • Larionova, Yu.O., Sazonova, L.V., Lebedeva, N.M., et al., Age of kimberlites of the Arkhangelsk province: Rb–Sr, 40Ar/39Ar isotope-geochronological and mineralogical data on phlogopite, Petrology, 2016, vol. 24, pp. 562–593.

    Article  Google Scholar 

  • Le Roux, V., Lee, C.-T.A., and Turner, S.J., Zn/Fe systematics in mafic and ultramafic systems: implications for detecting major element heterogeneities in the Earth’s mantle, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 2779–2796.

    Article  Google Scholar 

  • Lee, C.-T.A., Luffi, P., Chin, E.J., et al., Copper systematics in arc magmas and implications for crust–mantle differentiation, Science, 2012, vol. 336, pp. 64–68.

    Article  Google Scholar 

  • Li, Y. and Audetat, A., Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between sulfide phases and hydrous basanite melt at upper mantle conditions, Earth Planet. Sci. Lett., 2012, vol. 355–356, pp. 327–340.

    Google Scholar 

  • Litasov, K.D., Shatskiy, A., Ohtani, E., and Yaxley, G.M., Solidus of alkaline carbonatite in the deep mantle, Geology, 2013, vol. 41, no. 1, pp. 79–82.

    Article  Google Scholar 

  • Liu, J., Xia, Q.-K., Deloule, E., et al., Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains, China: recycled oceanic components in the mantle source, J. Petrol., 2015, vol. 56, no. 4, pp. 681–702.

    Article  Google Scholar 

  • Mahotkin, I.L., Gibson, S.A., Thompson, R.N., et al., Late Devonian diamondiferous kimberlite and alkaline picrite (protokimberlite?) magmatism in the Arkhangelsk region, NW Russia, J. Petrol., 2000, vol. 41, no. 2, pp. 210–227.

    Article  Google Scholar 

  • Martin, L.H.J., Schmidt, M.W., Mattsson, H.B., and Guenther, D., Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa, J. Petrol., 2013, vol. 54, pp. 2301–2338.

    Article  Google Scholar 

  • Mattey, D., Lowry, D., and Macpherson, C., Oxygen isotope composition of mantle peridotite, Earth Planet. Sci. Lett., 1994, vol. 128, pp. 231–241.

    Article  Google Scholar 

  • McDonough, W.F. and Sun, S.-S., Composition of the Earth, Chem. Geol, 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  • Menzies, M.A., Archaean, Proterozoic, and Phanerozoic lithosphere, Continental Mantle, Menzies, M.A., Ed., Oxford: Oxford University Press, 1990, pp. 67–86.

  • Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology, New York: Plenum Press, 1986.

    Book  Google Scholar 

  • Mitchell, R.H., Kimberlites, Orangeites and Related Rocks, New York: Plenum Press, 1995.

    Book  Google Scholar 

  • Mitchell, R.H., Petrology of hypabyssal kimberlites: relevance to primary magma compositions, J. Volcanol. Geotherm. Res., 2008, vol. 174, pp. 1–8.

    Article  Google Scholar 

  • Moore, A.E., Olivine: a monitor of magma evolutionary paths in kimberlite and olivine melilitites, Contrib. Mineral. Petrol., 1988, vol. 99, pp. 238–248.

    Article  Google Scholar 

  • Moore, A.E., The case for a cognate, polybaric origin for kimberlitic olivines, Lithos, 2012, vol. 1–10, pp. 128–131.

    Google Scholar 

  • Newton, D.E., Kopylova, M.G., Burgess, J., and Strand, P., Peridotite and pyroxenite xenoliths from the Muskox kimberlite, Northern Slave Craton, Canada, Can. J. Earth Sci., 2016, vol. 53, no. 1, pp. 41–58.

    Article  Google Scholar 

  • Nosova, A.A., Sazonova, L.V., Larionova, Yu.O., et al., Protoliths of A-type mantle eclogites (garnet clinopyroxenites) from kimberlite xenoliths in the V. Grib pipe, Arkhangelsk Province, in Petrografiya magmaticheskikh i metamorficheskikh gornykh porod. Materialy XII Vserossiiskogo Petrograficheskogo soveshchaniya s uchastiem zarubezhnykh (Petrography of Magmatic and Metamorphic Rocks. Proceedings of 12th All-Russian Petrographic Conference with International Participation), Petrozavodsk: Karel’skii nauchnyi tsentr RAN, 2015, pp. 346–348.

    Google Scholar 

  • Parsadanyan, K.S., Kononova, V.A., and Bogatikov, O.A., Sources of heterogeneous magmatism of the Arkhangelsk Diamondiferous Province, Petrology, 1996, vol. 4, no. 5, pp. 460–479.

    Google Scholar 

  • Perkins, G.B., Sharp, Z.D., and Selverstone, J., Oxygen isotope evidence for subduction and rift-related mantle metasomatism beneath the Colorado Plateau–Rio Grande rift transition, Contrib. Mineral. Petrol., 2006, vol. 151, pp. 633–650.

    Article  Google Scholar 

  • Pertermann, M., Hirschmann, M.M., Hametner, K., et al., Experimental determination of trace element partitioning between garnet and silica-rich liquid during anhydrous partial melting of MORB-like eclogite, Geochem., Geophys., Geosyst., 2004, vol. 5, p. 1029. doi 10.1029/2003GC000638

    Article  Google Scholar 

  • Pervov, V.A., Bogomolov, E.S., Larchenko, V.A., et al., Rb–Sr age of kimberlites of the Pionerskaya Pipe, Arkhangel’sk Diamondiferous Province, Dokl. Earth Sci., 2005a, vol. 400, no. 1, pp. 67–71.

    Google Scholar 

  • Pervov, V.A., Larchenko, V.A., Stepanov, V.P., et al., Silly kimberlitov po r. Mela (Arkhangel’skaya almazonosnaya provintsiya): novye dannye o vozraste, sostave porod i mineralov, in Geologiya almaza–nastoyashchee i budushchee (Geology of Diamond—Present and Future), Voronezh: Voronezhskii gosuniversitet, 2005b.

    Google Scholar 

  • Pilbeam, L.H., Nielsen, T.F.D., and Waight, T.E., Digestion fractional crystallization (DFC): an important process in the genesis of kimberlites. Evidence from olivine in the Majuagaa kimberlite, southern West Greenland, J. Petrol., 2013, vol. 54, no. 7, pp. 1399–1425.

    Article  Google Scholar 

  • Prelević, D. and Foley, S.F., Accretion of arc-oceanic lithospheric mantle in the Mediterranean: evidence from extremely high-Mg olivines and Cr-rich spinel inclusions from lamproites, Earth Planet. Sci. Lett., 2007, vol. 256, pp. 120–135.

    Article  Google Scholar 

  • Rehfeldt, T., Foley, S.F., Jacob, D.E., et al., Contrasting types of metasomatism in dunite, wehrlite and websterite xenoliths from Kimberley, South Africa, Geochim. Cosmochim. Acta, 2008, vol. 72, no. 23, pp. 5722–5756.

    Article  Google Scholar 

  • Ripley, E.M., Brophy, J.G., and Li, C., Copper solubility in a basaltic melt and sulfide liquid/silicate melt partition coefficients of Cu and Fe, Geochim. Cosmochim. Acta, 2002, vol. 66, pp. 2791–2800.

    Article  Google Scholar 

  • Sablukov, S.M., On petrochemical series of kimberlite rocks, Dokl. Akad. Nauk SSSR, 1990, vol. 313, no. 4, pp. 935–939.

    Google Scholar 

  • Sablukov, S.M., Sablukova, L.I., and Shavyrina, M.V., Mantle xenoliths from the Zimnii Bereg kimberlite deposits of rounded diamonds, Arkhangelsk Diamondiferous Province, Petrology, 2000, vol. 8, no. 5, pp. 466–494.

    Google Scholar 

  • Samsonov, A.V., Tretyachenko, V.V., Nosova, A.A., et al., Sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern East European platform, Abstracts of 10th International Kimberlite Conference, 2012, Bangalore, 2012, p. 10IKC35.

    Google Scholar 

  • Samsonov, A.V., Nosova, A.A., Tretyachenko, V.V., et al., Collisional sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern East European Platform, Dokl. Earth Sci., 2009, vol. 425, no. 2, pp. 226–230.

    Article  Google Scholar 

  • Sazonova, L.V., Nosova, A.A., Kargin, A.V., et al., Olivine from the Pionerskaya and V. Grib Kimberlite pipes, Arkhangelsk Diamond Province, Russia: types, composition, and origin, Petrology, 2015, vol. 23, pp. 227–258.

    Article  Google Scholar 

  • Schmädicke, E., Gose, J., WittEickschen, G., and Bratz, H., Olivine from spinel peridotite xenoliths: hydroxyl incorporation and mineral composition, Am. Mineral., 2013, vol. 98, no. 10, pp. 1870–1880.

    Article  Google Scholar 

  • Scott Smith, B.H., Nowicki, T.E., Russell, J.K., et al., Kimberlite terminology and classification, Proceedings of 10th International Kimberlite Conference, Pearson, D.G. et al., Eds., Geol. Soc. India, 2013, Vol. 2. doi 10.1007/978-81-322-1173-0_1.10.1007/978-81-322-1173-0_1

    Google Scholar 

  • Sharp, Z.D., A laser-based microanalytical method for the in situ determination of oxygen isotope ratios in silicates and oxides, Geochim. Cosmochim. Acta, 1990, vol. 54, pp. 1353–1357.

    Article  Google Scholar 

  • Sharygin, I.S., Litasov, K.D., Shatskiy, A., et al., Melting phase relations of the Udachnaya-East group-I kimberlite at 3.0–6.5 GPa: experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes, Gondwana Res., 2015, vol. 28, no. 4, pp. 1391–1414.

    Article  Google Scholar 

  • Shchukina, E.V., Agashev, A.M., Kostrovitskii, S.I., and Pokhilenko, N.P., Metasomatic events in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province, Russia), Russ. Geol. Geophys., 2015a, no. 12, pp. 2153–2172.

    Google Scholar 

  • Shchukina, E.V., Agashev, A.M., Golovin, N.N., and Pokhlenko, N.P., Equigranular eclogites from the V. Grib kimberlite pipe: evidence for Paleoproterozoic subduction on the territory of the Arkhangelsk Diamondiferous Province, Dokl. Earth Sci., 2015b, vol. 462, no. 1, pp. 497–501.

    Article  Google Scholar 

  • Shen, T., Hermann, J., Zhang, L., et al., FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle, Contrib. Mineral. Petrol., 2014, vol. 167, p. 992.

    Article  Google Scholar 

  • Skinner, E.M.W., Contrasting group I and group II kimberlite petrology: towards a genetic model for kimberlites, Proceedings of 4th International Kimberlite Conference, Perth, 1989, Ross, J. et al., Eds., 1989, pp. 528–544.

    Google Scholar 

  • Skinner, E.M. and Clement, C.R., Mineralogical classification of Southern African kimberlites, Proceedings of 2nd International Conference, Boyd, F.R.and Meyer, H.O.A., Eds., Washington, DC: D.C. AGU, 1979, pp. 129–139.

    Google Scholar 

  • Smart, K.A., Heaman, L.M., Chacko, T., et al., The origin of high-MgO diamond eclogites from the Jericho kimberlite, Canada, Earth Planet. Sci. Lett., 2009, vol. 284, pp. 527–537.

    Article  Google Scholar 

  • Smith, C.B., Gurney, J.J., Skinner, E.M.W., et al., Geochemical character of Southern African kimberlites: a new approach based on isotopic constraints, Trans. Geol. Soc. S. Afr., 1985, vol. 88, pp. 267–280.

    Google Scholar 

  • Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., et al., Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia, Lithos, 2009, vol. 112S, pp. 701–713.

    Google Scholar 

  • Sobolev, N.V., Sobolev, A.V., Tomilenko, A.A., et al., Paragenesis and complex zoning of olivine macrocrysts from unaltered kimberlite of the Udachnaya-East pipe (Yakutia): relationship with the kimberlite formation conditions and evolution, Russ. Geol. Geophys., 2015, nos. 1–2, pp. 260–279.

    Google Scholar 

  • Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes, Magmatism in the Ocean Basins, Saunders, A.D.and Norry, M.J., Eds., Geol. Soc. London, 1989, vol. 42, pp. 313–345.

    Google Scholar 

  • Sweeney, R.J., Prozesky, V., and Przybylowicz, W., Selected trace and minor element partitioning between peridotite minerals and carbonatite melts at 18–46 kb pressure, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 3671–3683.

    Article  Google Scholar 

  • Taylor, H.O., Jr., Water/rock interactions and origin of H2O in granitic batholiths, J. Geol. Soc. London, 1978, vol. 133, pp. 509–558.

    Article  Google Scholar 

  • Taylor, H.P., Jr., Frechen, J., and Degens, E.T., Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alnö district, Sweden, Geochim. Cosmochim. Acta, 1967, vol. 31, pp. 407–430.

    Article  Google Scholar 

  • Tuff, J. and O’Neill, H.St.C., The effect of sulfur on the partitioning of Ni and other first-row transition elements between olivine and silicate melt, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 6180–6205.

    Article  Google Scholar 

  • Tursack, E. and Liang, Y., A comparative study of melt–rock reactions in the mantle: laboratory dissolution experiments and geological field observations, Contrib. Mineral. Petrol., 2012, vol. 163, pp. 861–876.

    Article  Google Scholar 

  • Valley, J.W., Kitchen, N., Kohn, M.J., et al., UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 5223–5231.

    Article  Google Scholar 

  • Veksler, I.V., Petibon, C., Jenner, G.A., et al., Trace element partitioning in immiscible silicate–carbonate liquid systems: an initial experimental study using a centrifuge autoclave, J. Petrol., 1998, vol. 39, pp. 2095–2104.

    Article  Google Scholar 

  • Verichev, E.M., Garanin, V.K., Garanin, K.V., et al., Geology, composition, formation, and prospecting technique of the V. Grib kimberlite pipe, in Problemy prognozirovaniya, poiskov i izucheniya mestorozhdenii poleznykh iskopaemykh na poroge XXI veka (Problems of Forecasting, Search, and Study of Mineral Resources on the turn of 21th Century), Voronezh: Voronezh. Gos. Univ., 2003, pp. 43–48.

    Google Scholar 

  • Woolley, A.R. and Kempe, D.R.C., Carbonatites: nomenclature, average chemical compositions, and element distribution, in Carbonatites: Genesis and Evolution, Bell, K., Ed., London: Unwin Hyman, 1989, pp. 1–14.

    Google Scholar 

  • Yaxley, G.M. and Green, D.H., Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust, Schweizerische Mineralogische und Petrographische Mitteilungen, 1998, vol. 78, pp. 243–255.

    Google Scholar 

  • Zanetti, A., Tiepolo, M., Oberti, R., and Vannucci, R., Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt, Lithos, 2004, vol. 75, pp. 39–54.

    Article  Google Scholar 

  • Zhang, H.-F., Mattey, D.P., Grassineau, N., et al., Recent fluid processes in the Kaapvaal Craton, South Africa: coupled oxygen isotope and trace element disequilibrium in polymict peridotites, Earth Planet. Sci. Lett., 2000, vol. 176, pp. 57–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nosova.

Additional information

Original Russian Text © A.A. Nosova, E.O. Dubinina, L.V. Sazonova, A.V. Kargin, N.M. Lebedeva, V.A. Khvostikov, Zh.P. Burmii, I.A. Kondrashov, V.V. Tret’yachenko, 2017, published in Petrologiya, 2017, Vol. 25, No. 2, pp. 135–167.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nosova, A.A., Dubinina, E.O., Sazonova, L.V. et al. Geochemistry and oxygen isotopic composition of olivine in kimberlites from the Arkhangelsk province: Contribution of mantle metasomatism. Petrology 25, 150–180 (2017). https://doi.org/10.1134/S0869591117010064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117010064

Navigation