Skip to main content
Log in

Synkinematic granitoid magmatism of Western Sangilen, South-East Tuva

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The problems of tectonic control of composition, size, and morphology of synkinematic crustal granitoids are discussed by the example of the Western Sangilen granites (South-East Tuva). Comparative analysis was performed for felsic bodies and massifs spatially confined to tectonic zone (Erzin shear zone): Erzin migmatite–granite complex (510–490 Ma), Matut granitoid massif (510–490 Ma), Bayankol polyphase gabbro-monzodiorite–granodiorite–granite massif (490–480 Ma), and the Nizhneulor Massif (480–470 Ma). It is shown that synkinematic felsic melts during the transition from collisional compression to transpression were formed at different crustal levels. An increase of shear component provided favorable conditions for the migration of felsic melts, increase of size and morphology of intrusive bodies from vein type to harploith (likely, loppoliths and laccoliths) and further to stocks. All kinematic granitoids of the Erzin tectonic zone are ascribed to the crustal S-type granites. Dispersion and average chemical composition of the synkinematic granites strongly depend on the degree of their “isolation” from protolith. From auto- and paraautochthonous granitoids to allochthonous granites, the compositional dispersion decreases and the chemical composition is displaced toward I-type magmatic rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Petrograficheskii kodeks Rossii. Magmaticheskie, metamorficheskie, metasomaticheskie, impaktnye obrazovaniya. Izdanie tret’e, ispravlennoe i dopolnennoe (Petrographic Code of Russia. Magmatic, Metamorphic, Metasomatic, and Impact Rocks. 3rd Ed.), St. Petersburg: Izd-vo VSEGEI, 2009, p. 200.

  • Barbarin, B., A review of the relationships between granitoid types, their origins and their geodynamic environments, Lithos, 1999, vol. 46, pp. 605–626.

    Article  Google Scholar 

  • Benn, K., Cruden, A.R., and Sawyer, E.W., Extraction, transport and emplacement of granitic magmas, J. Struct. Geol., 1998, vol. 20, nos. 9/10.

    Google Scholar 

  • Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO–MgO–CaO–Al2O3–TiO2–SiO2, Contrib. Mineral. Petrol., 1996, no. 126, pp. 1–24.

    Article  Google Scholar 

  • Boynton, W.V., Cosmochemistry of the rare earth elements: meteorite studies, Rare Earth Element Geochemistry, Henderson, P., Ed., Amsterdam: Elsevier, 1984, pp. 63–114.

    Chapter  Google Scholar 

  • Brown, M. and Solar, G.S., Shear-zone systems and melts: feedback relations and self-organization in orogenic belts, J. Struct. Geol., 1998, vol. 20, nos. 2–3, pp. 211–227.

    Article  Google Scholar 

  • Clemens, J.C., Observations on the origins and ascent mechanisms of granitic magmas, J. Geol. Soc. London, 1998, vol. 155, pp. 843–851.

    Article  Google Scholar 

  • Collin, W.J. and Sawyer, E.W., Pervasive granitoid magma transfer through the lower-middle crust during non-coaxial compressional deformation, J. Metamorph. Geol., 1996, vol. 14, pp. 565–579.

    Article  Google Scholar 

  • D’Lemos, R.S., Brown, M., and Strachan, R.A., Granite magma generation, ascent and emplacement within a transpressional orogeny, J. Geol. Soc., 1992, vol. 149, pp. 487–490.

    Article  Google Scholar 

  • Fedorovsky, V.S., Vladimirov, A.G., Khain, E.V., et al., Tectonics, metamorphism, and magmatism of the collisional zones of Caledonides, Geotektonika, 1995, no. 3, pp. 3–22.

    Google Scholar 

  • Gibsher, A.S., Vladimirov, A.G., and Vladimirov, V.G., Geodynamics of the Early Paleozoic thrust-and-fold structure of the Sangilen, Southeastern Tuva, Dokl. Earth Sci, 2000, vol. 370, no. 4, pp. 50–53.

    Google Scholar 

  • Hutton, D.H.W. and Reavy, R.J., Strike-slip tectonics and granite petrogenesis, Tectonics, 1992, vol. 11, pp. 960–967.

    Article  Google Scholar 

  • Hutton, D.H.W., Dempster, T.J., Brown, P.E., and Becker, S.D., A new mechanism of granite emplacement: intrusion in active extensional shear zones, Nature, 1990, vol. 343, pp. 452–455.

    Article  Google Scholar 

  • Izokh, A.E., Kargopolov, S.A., Shelepaev, R.A., et al., Basite magmatism of the Cambrian–Ordovician stage of the Altai–Sayan fold area and relation with high temperature low-pressure metamorphism, in Aktual’nye voprosy geologii i mineragenii yuga Sibiri. Materialy nauch.-prakt. konf., (Actual Problems of Geology and Metallogeny of Southern Siberia. Proceedings of Scientific-Practical Conference), Novosibirsk, 2001, pp. 68–72.

    Google Scholar 

  • Johannesa, W., Ehlersb, C., Kriegsmanc, L.M., and Mengel, K., The link between migmatites and S-type granites in the Turku area, southern Finland, Lithos, 2003, vol. 68, nos. 3–4, pp. 69–90.

    Article  Google Scholar 

  • Kalsbeek, F., Jepsen, H.F., and Nutman, A.P., From source migmatites to plutons: tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogen, Lithos, 2001, vol. 57, no. 1, pp. 1–21.

    Article  Google Scholar 

  • Kargopolov, S.A., Low-depth granulites of Western Sangilen (Southeastern Tuva), Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Novosibirsk: IGM SO RAN, 1997.

    Google Scholar 

  • Karmysheva, I.V., Synkinematic granites and collisional–shear deformations of Western Sangilen (SE Tuva):, Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Novosibirsk: IGM SO RAN, 2012.

    Google Scholar 

  • Karmysheva, I.V., Vladimirov, V.G., Volkova, N.I., et al., Two Types of High-Grade Metamorphism in West Sangilen (Southeast Tuva), Dokl. Earth Sc., 2011, vol. 441, no. 1, pp. 1546–1551.

    Article  Google Scholar 

  • Khain, E.V., Gibsher, A.S., Didenko, A.N., et al., Stages in the evolution of the continental margins of the Paleoasian Ocean in the Late Riphean and Early Paleozoic, in Tektonika yuga Vostochnogo Sayana i ego polozhenie v Uralo-Mongol’skom poyase (Tectonics of the Southern East Sayan and Its Position in the Ural–Mongolia Belt), Moscow: Nauchnyi mir, 2002, pp. 132–158.

    Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., et al., Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence, J. Asian Earth Sci., 2004, vol. 23, no. 5, pp. 605–627.

    Article  Google Scholar 

  • Kozakov, I.K., Kotov, A.B., Sal’nikova, E.B., et al., Metamorphic age of crystalline complexes of the Tuva–Mongolia Massif: the U–Pb geochronology of granitoids, Petrology, 1999, vol. 7, no. 2, pp. 177–191.

    Google Scholar 

  • Kozakov, I.K., Kotov, A.B., Sal’nikova, E.B., et al., Timing of the structural evolution of metamorphic rocks in the Tuva–Mongolian Massif, Geotectonics, 2001, vol. 35, no. 3, pp. 165–184.

    Google Scholar 

  • Kozakov, I.K., Kovach, V.P., Yarmolyuk, V.V., et al., Crust-forming processes in the geologic development of the Tuva–Mongolia Massif: Sm-Nd isotopic and geochemical data for granitoids, Petrology, 2003, vol. 11, no. 5, pp. 444–463.

    Google Scholar 

  • Kuz’michev, A.B., Tektonicheskaya istoriya Tuvino-Mongol’skogo massiva: rannebaikal’skii, pozdnebaikal’skii i rannekaledonskii etapy (Tectonic History of the Tuva–Mongolia Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages), Moscow: PROBEL-2000, 2004.

    Google Scholar 

  • Kuzmichev, A.B., Bibikova, E.V., and Zhuravlev, D.Z., Neoproterozoic (similar to 800 Ma) orogeny in the Tuva–Mongolia Massif (Siberia): island arc-continent collision at the northeast Rodinia margin, Precambrian Res., 2001, vol. 110, nos. 1–4, pp. 109–126.

    Article  Google Scholar 

  • Le Maitre, R.W., Bateman, P., Dudek, A., et al., A Classification of Igneous Rocks and a Glossary of Terms, Oxford: Blackwell Scientific Publications, 1989.

    Google Scholar 

  • Lepezin, G.G., Metamorficheskie kompleksy Altae-Sayanskoi skladchatoi oblasti, Tr. IGiG SO AN SSSR (Metamorphic Complexes of the Altai–Sayan Fold Area. Proc. Inst. Geol. Geokhim. Sib. Otd. Ross. Akad. Nauk), Novosibirsk: Nauka SO, 1978, vol. 398.

  • Lister, G.S. and Snoke, A.W., S-C mylonites, J. Struct. Geol., 1980, vol. 2, no. 3, pp. 335–370.

    Article  Google Scholar 

  • Maniar, P.D. and Piccoli, P.M., Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 1989, vol. 101, pp. 635–643.

    Article  Google Scholar 

  • Moyen, J.-F., Nedelec, A., Martin, H., and Jayananda, M., Syntectonic granite emplacement at different structural levels: the Closepet Granite, South India, J. Struct. Geol., 2003, vol. 25, pp. 611–631.

    Article  Google Scholar 

  • Passchier, C.W. and Trouw, R.A.J., Microtectonics, Berlin Heidelberg: Springer-Verlag, 1996.

    Google Scholar 

  • Petrova, A.Yu., Rb-Sr isotope system of metamorphic and magmatic rocks of Western Sangilen (Southeast Tuva), Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Moscow: IMGRE, 2001.

    Google Scholar 

  • Rosen, O.M. and Fedorovsky, V.S., Kollizionnye granitoidy i rassloenie zemnoi kory (primery kainozoiskii, paleozoiskikh i proterozoiskikh kollizionnykh sistem) (Collisional Granitoids and the Earth Crust Layering), Moscow: Nauchnyi mir, 2001.

    Google Scholar 

  • Rudnick, R.L., Making continental crust, Nature, 1995, vol. 378, pp. 571–578.

    Article  Google Scholar 

  • Salnikova, E.B., Kozakov, I.K., Kotov, A.B., et al., Age of Palaeozoic granites and metamorphism in the Tuvino–Mongolian massif of the Central Asian mobile belt: loss of a Precambrian microcontinent, Precambrian Res., 2001, vol. 110, pp. 143–164.

    Article  Google Scholar 

  • Shelepaev, R.A., Evolution of the basite magmatism of Western Zangilen (Southeastern Tuva), Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Novosibirsk: IGM SO RAN, 2006.

    Google Scholar 

  • Sklyarov, E.V., Gladkochub, D.P., Donskaya, T.V., et al., Interpretatsiya geokhimicheskikh dannykh, Ucheb. Posobie (Interpretation of Geochemical Data. A Textbook), Moscow: Intermet Inzhiniring, 2001.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Evolution and Composition, London: Blackwell, 1985.

    Google Scholar 

  • Ushakova, E.N., Biotity magmaticheskikh porod (Biotites of Magmatic Rocks), Novosibirsk: Nauka SO, 1980.

    Google Scholar 

  • Van der Pluijm Ben, A. and Marshak, S., Earth Structure: an Introduction to Structural Geology and Tectonics, 2nd Ed., New-York–London: W.W. Norton & Company, 2004.

    Google Scholar 

  • Vanderhaeghe, O., Pervasive melt migration from migmatites to leucogranite in the Shuswap metamorphic core complex, Canada: control of regional deformation, Tectonophysics, 1999, vol. 312, pp. 35–55.

    Article  Google Scholar 

  • Vanderhaeghe, O. and Teyssier, C., Formation of the Shuswap metamorphic core complex during late-orogenic collapse of the Canadian Cordillera: role of ductile thinning and partial melting of the mid- to lower crust, Geodynamics Acta, 1997, vol. 10, pp. 41–58.

    Article  Google Scholar 

  • Vigneresse, J.-L., Control of granite emplacement by regional deformation, Tectonophysics, 1995, vol. 249, pp. 173–186.

    Article  Google Scholar 

  • Vladimirov, V.G. and Karmysheva, I.V., Structural and compositional changes at the contact with a zone of hightemperature blastomylonitization; a case study of the Erzin shear zone, Western Sangilen, Southeastern Tuva), in Tektonika skladchatykh poyasov Evrazii: skhodstvo, razlichie, kharakternye cherty noveishego goroobrazovaniya, regional’nye obobshcheniya: Materialy XLVI Tektonicheskogo soveshchaniya (Tectonics of Fold Belts of Eurasia: Similarity, Difference, Characteristic Features of the Youngest Orogenesis, Regional Generaization. Proceedings of 46th Tectonic Conference), Moscow, 2014, vol. 1, pp. 52–54.

    Google Scholar 

  • Vladimirov, V.G. and Lepezin, G.G., Structural changes in the metamorphic framing of the Ulor granitoid massif (Southwestern Sangilen), Geol. Geofiz., 1996, vol. 37, no. 6, pp. 113–116.

    Google Scholar 

  • Vladimirov, V.G., Vladimirov, A.G., Gibsher, A.S., et al., Model of the tectonometamorphic evolution for the Sangilen Block (Southeastern Tuva, Central Asia) as a reflection of the Early Caledonian accretion–collision tectogenesis, Dokl. Earth Sci., 2005, vol. 405, no. 8, pp. 1159–1165.

    Google Scholar 

  • Wickham, S.M., The segregation and emplacement of granitic magmas, J. Geol. Soc. London, 1987, vol. 144, pp. 281–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karmysheva.

Additional information

Original Russian Text © I.V. Karmysheva, V.G. Vladimirov, A.G. Vladimirov, 2017, published in Petrologiya, 2017, Vol. 25, No. 1, pp. 92–118.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmysheva, I.V., Vladimirov, V.G. & Vladimirov, A.G. Synkinematic granitoid magmatism of Western Sangilen, South-East Tuva. Petrology 25, 87–113 (2017). https://doi.org/10.1134/S0869591117010040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591117010040

Navigation