Skip to main content
Log in

The Early Paleozoic basite magmatism of Western Transbaikalia: Composition, isotope age (U-Pb, SHRIMP RG), magma sources, and geodynamics

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Remnants of the Early Paleozoic gabbro and gabbromonzonite with an age of 514.6 ± 7.2 Ma (U-Pb, Zrn, SHRIMP-RG, Turka Massif) were identified among basites spatially associated with Late Paleozoic granitoids of Western Transbaikalia. Obtained geochronological data are close to those of felsic subvolcanic rocks of the Early Cambrian volcanotectonic structures of the Uda-Vitim paleoisland arc and gabbro of the Dzhida island arc in Central and Southwestern Transbaikalia. As compared to the Late Paleozoic analogues, the Early Paleozoic gabbromonzonite is characterized by the moderately low potassic alkalinity, fractionated REE pattern, and LILE enrichment relative to HFSE. The Early Paleozoic gabbro and gabbromonzonite are depleted in Nb, Ta, Zr, and Hf and enriched in Pb and Sr, which is typical of suprasubduction magmatic rocks. Geochemical data indicate a contribution of crustal (subducted) material in a magma source. A combination of geological, geochemical, and isotope-geochronological data indicates that the Early Paleozoic gabbromonzonite was formed in the Uda-Vitim paleoisland arc system in a suprasubduction setting. The geochemical similarity of the Early Paleozoic rocks and Late Paleozoic basites, which are associated with the Late Paleozoic granitic rocks of the Angara-Vitim batholith and were formed 200 Ma later, is attributed to inheritance of mantle source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antipin, V.S., Makrygina, V.A., and Petrova, Z.I., Comparative geochemistry of granitoids and metamorphic country rocks in the western Angara–Vitim Batholith, western Baikal area, Geochem. Int., 2006, vol. 44, no. 3, pp. 258–273.

    Article  Google Scholar 

  • Ariskin, A.A., Danyushevskii, L.V., Konnikov, E.G., et al., The Dovyren intrusive complex (northern Baikal region, Russia): isotope-geochemical markers of contamination of parental magmas and extreme enrichment of source, Russ. Geol. Geophys., 2015, vol. 56, no. 3, pp. 528–556.

    Article  Google Scholar 

  • Avanzinelli, R., Braschi, E., Marchionni, S., and Bindi, L., Mantle melting in within-plate continental settings: SrNd-Pb and U-series isotope constraints in alkali basalts from the Sicily channel (Pantelleria and Linosa islands, southern Italy), Lithos, 2014, vol. 188, pp. 113–129.

    Article  Google Scholar 

  • Belousova, E.A., Griffin, W.L., O’Reilly, S.Y., and Fisher, N.I., Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral. Petrol., 2002, vol. 143, pp. 602–622.

    Article  Google Scholar 

  • Bogatikov, O.A. and Tsvetkov, A.A., Magmaticheskaya evolyutsiya ostrovnykh dug (Magmatic Evolution of Island Arcs), Moscow: Nauka, 1988.

    Google Scholar 

  • Bogatikov, O.A., Kovalenko, V.I., and Sharkov, E.V., Magmatizm, tektonika, geodinamika Zemli (Magmatism, Tectonics, and Geodynamics of the Earth), Moscow: Nauka, 2010.

    Google Scholar 

  • Bourdon, B., Turner, S.P., and Ribe, N.M., Partial melting and upwelling rates beneath the Azores from a U-series isotope perspective, Earth Planet. Sci. Lett., 2005, vol. 239, pp. 42–56.

    Article  Google Scholar 

  • Callegaro, S., Rapaille, C., Marzoli, A., et al., Enriched mantle source for the Central Atlantic Magmatic Province: new supporting evidence from southwestern Europe, Lithos, 2014, vol. 188, pp. 15–32.

    Article  Google Scholar 

  • Causens, B.L., Allan, J.F., and Gorton, M.P., Subductionmodified pelagic sediments as the enrichment component in back-arc basalt from the Japan Sea: ocean drilling program sites 197 and 794, Contrib. Mineral. Petrol., 1994, vol. 117, pp. 421–434.

    Article  Google Scholar 

  • Condie, K.C., Source of Proterozoic mafic dyke swarms: constraints from Th/Ta and La/Yb ratios, Precambrian Res., 1997, vol. 81, pp. 3–14.

    Article  Google Scholar 

  • Condie, K.C., High field strength element rations in Archean basalts: a window to evolving sources of mantle plumes?, Lithos, 2005, vol. 79, pp. 491–504.

    Article  Google Scholar 

  • Dobretsov, N.L., Early Paleozoic tectonics and geodynamics of Central Asia: role of mantle plumes, Russ. Geol. Geophys., 2011, vol. 52, no. 12, pp. 1539–1552.

    Article  Google Scholar 

  • Dobretsov, N.L., Borisenko, A.S., Izokh, A.E., and Zhmodik, S.M., A thermochemical model of Eurasian Peromo-Triassic mantle plumes as a basis for prediction and exploration for Cu–Ni–PGE and rare-metal ore deposits, Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 903–924.

    Article  Google Scholar 

  • Dobretsov, N.L., Kulakov, I.Yu., Litasov, K.D., and Kukarina, E.V., An integrate model of subduction: contributions from geology, experimental petrology, and seismic tomography, Russ. Geol. Geophys., 2015, vol. 56, no. 1–2, pp. 13–38.

    Article  Google Scholar 

  • Ewart, A., Collerson, K.D., and Regelous, M., Geochemical evolution within the Tonga–Kermadec–Lau arc–backarc systems: the role of varying mantle wedge composition in space and time, J. Petrol., 1998, vol. 39, no. 3, pp. 331–368.

    Article  Google Scholar 

  • Farmer, G.L., Continental basaltic rocks, in Treatise on geochemistry, Elsevier Ltd, 2003, pp. 85–121.

    Google Scholar 

  • Furman, T., Bryce, J.G., Karson, J., and Iotti, A., East African Rift System (EARS) plume structure: insights from Quaternary mafic lavas of Turkana, Kenya, J. Petrol., 2004, vol. 45, no. 5, pp. 1069–1088.

    Article  Google Scholar 

  • Geologicheskaya karta SSSR masshtaba 1: 200000. Seriya Pribaikal’skaya. List N-49-XXVI. Ob”yasnitel’naya zapiska (Geological Map of the USSR on a Scale 1: 200000. Series Pribaikal’skaya. Sheet N-49-XXVI. Explanatory Notes), Moscow: Nedra, 1968.

  • Gill, J.B., Orogenic Andesites and Plate Tectonics, Berlin: Springer, 1981.

    Google Scholar 

  • Gordienko, I.V., Geodynamic evolution of Late Baikalides and Paleozoids in the folded periphery of the Siberian Craton, Russ. Geol. Geophys., 2006, vol. 47, no. 1, pp. 51–67.

    Google Scholar 

  • Gordienko, I.V., Filimonov, A.V., Minina, O.R., et al., Dzhida island-arc system in the Paleoasian ocean: structure and main stages of Vendian–Paleozoic geodynamic evolution, Russ. Geol. Geophys., 2007, vol. 48, no. 1, pp. 91–106.

    Article  Google Scholar 

  • Gordienko, I.V., Bulgatov, A.N., Ruzhentsev, S.V., et al., The Late Riphean–Paleozoic history of the Uda-Vitim island-arc system in the Transbaikalian sector of the Paleoasian ocean, Russ. Geol. Geophys., 2010, vol. 51, no. 5, pp. 461–481.

    Article  Google Scholar 

  • Haase, K.M., Devey, C.W., and Mertz, D.F., Geochemistry of lavas from Mohns Ridge, Norwegian–Greenland Sea: implications for melting conditions and magma sources near Jan Mayen, Contrib. Mineral. Petrol., 1996, vol. 123, no. 3, pp. 223–237.

    Article  Google Scholar 

  • Halliday, A.N., Lee, D.-C., and Tommasini, S., Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle, Earth Planet. Sci. Lett., 1995, vol. 133, pp. 379–395.

    Article  Google Scholar 

  • Kelemen, P.B., Hanghoj, K., and Greene, A.R., One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, Treatise on Geochemistry, Elsevier, 2003, vol. 3, pp. 593–659.

    Google Scholar 

  • Kepezhinskas, P., McDermott, F., Defant, M.J., et al., Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 577–600.

    Article  Google Scholar 

  • Kiselev, A.I., Yarmolyuk, V.V., Tomshin, M.D., et al., Permian–Triassic traps of the East Siberian Craton: the problem of estimation of the sources of Phanerozoic intraplate magmatism, Dokl. Earth Sci., 2014, vol. 455, no. 1, pp. 299–305.

    Article  Google Scholar 

  • Klimuk, V.S. and Sitnikova, V.S., Metavolcanic rocks of the Abaga volcanotectonic structure: Uda-Vitim island-art system (Western Transbaikal Region), in Vulkanizm i geodinamika. Materialy III Vserossiiskogo simpoziuma po vulkanologii i paleovulkanologii (Volcanism and Geodynamics. Proceedings of the 3rd All-Russian Symposium on Volcanology and Paleovolcanology), Ulan-Ude: Izd-vo BNTs SORAN, 2006, vol. 1, pp. 205–209.

    Google Scholar 

  • Kovalenko, V.I., Kozlovsky, A.M., and Yarmolyuk, V.V., Trace element ratios as indicators of source mixing and magma differentiation of alkali granitoids and basites of the Haldzan-Buregtey Massif and the Haldzan-Buregtey raremetal deposit, Western Mongolia, Petrology, 2009a, vol. 17, no. 2, pp. 158–177.

    Article  Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Kovach, V.P., et al., Variations in the Nd isotopic ratios and canonical ratios of concentrations of incompatible elements as an indication of mixing sources of alkali granitoids and basites in the Khaldzan–Buregtei Massif and the Khaldzan–Buregtei raremetal deposit in Western Mongolia, Petrology, 2009b, vol. 17, no. 3, pp. 227–252.

    Article  Google Scholar 

  • Kröner, A., Fedotova, A.A., Khain, E.V., et al., Neoproterozoic ophiolite and related high-grade rocks of the Baikal–Muya belt, Siberia: geochronology and geodynamic implications, J. Asian Earth Sci., 2015, vol. 111, pp. 138–160.

    Article  Google Scholar 

  • Leake, B.E., Woolley, A.R., and Apps, C.E., Nomenclature of amphiboles: report of the subcommittee of the amphiboles of the international mineralogical association, commission on new minerals and mineral names, Can. Mineral., 1997, vol. 35, pp. 219–246.

    Google Scholar 

  • Litvinovskii, B.A., Zanvilevich, A.N., Alakshin, A.M., and Podladchikov, Yu.Yu., Angaro-Vitimskii batolit–krupneishii granitoidnyi pluton (Angara–Vitim Batholith–the Largest Granitoid Pluton), Novosibirsk: OIGGM SORAN, 1993.

    Google Scholar 

  • Litvinovsky, B.A., Tsygankov, A.A., Jahn, B.M., et al., Origin and evolution of overlapping calc-alkaline and alkaline magmas: the late Paleozoic post-collision igneous province of Transbaikalia (Russia), Lithos, 2011, vol. 125, pp. 845–874.

    Article  Google Scholar 

  • Macdonald, R., Rogers, N.W., Fitton, J.G., et al., Plumelithosphere interactions in the generation of the basalts of the Kenya rift, East Africa, J. Petrol., 2001, vol. 42, no. 5, pp. 877–900.

    Article  Google Scholar 

  • Middlemost, E.A.K., Naming materials in the magma/igneous rock systems, Earth Sci. Rev., 1994, vol. 37, pp. 215–224.

    Article  Google Scholar 

  • Parfenov, L.M., Berzin, N.A., Khanchuk, A.I., et al., Model of formation of orogenic belts of central and northeastern Asia, Tikhookean. Geol., 2003, vol. 22, no. 6, pp. 7–41.

    Google Scholar 

  • Pearce, J.A., Lippard, S.J., and Roberts, S., Characteristics and tectonic significance of suprasubduction zone ophiolites, marginal basin geology: volcanic and associated sedimentary and tectonic processes in modern and ancient marginal basins, in Marginal Basin Geology, Kokelaar, B.P. and Howells, M.F., Eds., Geol. Soc. London, Sp. Publ., 1984, vol. 16, pp. 74–94.

    Google Scholar 

  • Ripp, G.S., Izbrodin, I.A., Lastochkin, E.I., et al., Oshurkovskii bazitovyi pluton: khronologiya, izotopnogeokhimicheskie i mineralogicheskie osobennosti, usloviya obrazovaniya (Oshurkovskii Basite Pluton: Chronology, Isotope geochemical and Mineralogical Features, and Conditions of Formation), Novosibirsk: Geo, 2013.

    Google Scholar 

  • Ruzhentsev, S.V., Minina, O.R., Nekrasov, G.E., et al., The Baikal–Vitim fold system: structure and geodynamic evolution, Geotectonics, 2012, vol. 46, no. 2, pp. 87–110.

    Article  Google Scholar 

  • Salop, L.I., Geologiya Baikal’skoi gornoi oblasti (Geology of the Baikal Mountain System), Moscow: Nedra, 1967, vol. 2.

  • Schiano, P., Monzier, M., Eissen, J.P., et al., Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes, Contrib. Mineral. Petrol., 2010, vol. 160, pp. 297–312.

    Article  Google Scholar 

  • Stolz, A.J., Jochum, K.P., and Spettel, B., Fluid and meltrelated enrichment in the subarc mantle: evidence from Nb/Ta variation in island-arc basalts, Geology, 1996, vol. 24, no. 7, pp. 587–590.

    Article  Google Scholar 

  • Sun, S.S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Magmatism in the Oceanic Basins, Saunders A.D. and Norry M.J., Eds. Geol. Soc. Spec. Publ., 1989, no. 42, pp. 313–345.

    Article  Google Scholar 

  • Tsygankov, A.A., Magmaticheskaya evolyutsiya BaikaloMuiskogo vulkanoplutonicheskogo poyasa v pozdnem dokembrii (Magmatic Evolution of the Baikal–Muya Volcanoplutonic Belt in the Late Precambrian), Novosibirsk: Izd-vo SORAN, 2005.

    Google Scholar 

  • Tsygankov, A.A., Late Paleozoic granitoids in Western Transbaikalia: sequence of formation, sources of magmas, and geodynamics, Russ. Geol. Geophys., 2014, vol. 55, no. 2, pp. 153–176.

    Article  Google Scholar 

  • Tsygankov, A.A., Matukov, D.I., Berezhnaya, N.G., et al., Late Paleozoic granitoids of Western Transbaikalia: magma sources and stages of formation, Russ. Geol. Geophys., 2007, vol. 48, no. 1, pp. 120–140.

    Article  Google Scholar 

  • Tsygankov, A.A., Litvinovsky, B.A., Jahn, B.M., et al., Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data), Russ. Geol. Geophys., 2010, vol. 51, no. 9, pp. 972–994.

    Article  Google Scholar 

  • Tsygankov, A.A., Khubanov, V.B., Travin, A.V., et al., Late Paleozoic gabbroids of Western Transbaikalia: U-Pb (SHRIMP-II, LA-ICP-MS) and Ar-Ar isotope age, composition, and petrogenesis, Russ. Geol. Geophys., 2016 (in press).

    Google Scholar 

  • Wang, K., Plank, T., Walker, J.D., and Smith, E.I., A mantle melting profile across the Basin and Range, SWUSA, J. Geophys. Res., 2002, vol. 107, no. B1. doi 10.1029/2001JB000209

    Google Scholar 

  • Wang, H., Wu, Y-B., Qin, Z-W., et al., Age and geochemistry of Silurian gabbroic rocks in the Tongbai orogen, Central China: implications for the geodynamic evolution of the north Qinling arc-back-arc system, Lithos, 2013, vol. 179, pp. 1–15.

    Article  Google Scholar 

  • Watson, E.B. and Harrison, T.M., Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types, Earth Planet. Sci. Lett., 1983, vol. 64, pp. 295–304.

    Article  Google Scholar 

  • Yarmolyuk, V.V., Kovalenko, V.I., and Kuzmin, M.I., North Asian superplume activity in the Phanerozoic: magmatism and geodynamics, Geotectonics, 2000, vol. 34, no. 5, pp. 343–366.

    Google Scholar 

  • Yarmolyuk, V.V. and Kovalenko, V.I., Batholiths and geodynamics of batholiths formation in the Central Asian Fold Belt, Russ. Geol. Geophys., 2003, vol. 44, no. 12, pp. 1260–1274.

    Google Scholar 

  • Yarmolyuk, V.V., Kuzmin, M.I., and Kozlovsky, A.M., Late Paleozoic–Early Mesozoic within-plate magmatism in North Asia: traps, rifts, giant batholiths, and the geodynamics of their origin, Petrology, 2013, vol. 21, no. 2, pp. 101–126.

    Article  Google Scholar 

  • Yarmolyuk, V.V., Kuzmin, M.I., and Ernst, R.E., Intraplate geodynamics and magmatism in the evolution of the central Asian orogenic belt, J. Asian Earth Sci., 2014, vol. 93, pp. 158–179.

    Article  Google Scholar 

  • Yogodzinski, G.M., Volynets, O.M., Koloskov, A.V., et al., Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, far western Aleutians, J. Petrol., 1994, vol. 35, no. 1, pp. 163–204.

    Article  Google Scholar 

  • Zhang, L.C., Zhou, X.H., Ying, J.F., et al., Geochemistry and Sr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NEChina: implication for their origin and mantle source characteristics, Chem. Geol., 2008, vol. 256, pp. 12–23.

    Article  Google Scholar 

  • Zonenshain, L.P., Kuzmin, M.I., and Natapov, L.Sh., Tektonika litosfernykh plit territorii SSSR. Kn.1 (Tectonics of the Lithospheric Plates of the USSR Territory), Moscow: Nedra, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Tsygankov.

Additional information

Original Russian Text © A.A. Tsygankov, O.V. Udoratina, G.N. Burmakina, T.N. Antsiferova, M.A. Coble, 2016, published in Petrologiya, 2016, Vol. 24, No. 4, pp. 396–422.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsygankov, A.A., Udoratina, O.V., Burmakina, G.N. et al. The Early Paleozoic basite magmatism of Western Transbaikalia: Composition, isotope age (U-Pb, SHRIMP RG), magma sources, and geodynamics. Petrology 24, 367–391 (2016). https://doi.org/10.1134/S086959111604007X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111604007X

Navigation