Skip to main content
Log in

Kimberlite age in the Arkhangelsk Province, Russia: Isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper reports detailed data on phlogopite from kimberlite of three facies types in the Arkhangelsk Diamondiferous Province (ADP): (i) massive magmatic kimberlite (Ermakovskaya-7 Pipe), (ii) transitional type between massive volcaniclastic and magmatic kimberlite (Grib Pipe), and (iii) volcanic kimberlite (Karpinskii-1 and Karpinskii-2 pipes). Kimberlite from the Ermakovskaya-7 Pipe contains only groundmass phlogopite. Kimberlite from the Grib Pipe contains a number of phlogopite populations: megacrysts, macrocrysts, matrix phlogopite, and this mineral in xenoliths. Phlogopite macrocrysts and matrix phlogopite define a single compositional trend reflecting the evolution of the kimberlite melt. The composition points of phlogopite from the xenoliths lie on a single crystallization trend, i.e., the mineral also crystallized from kimberlite melt, which likely actively metasomatized the host rocks from which the xenoliths were captured. Phlogopite from volcaniclastic kimberlite from the Karpinskii-1 and Karpinskii-2 pipes does not show either any clearly distinct petrographic setting or compositional differentiation. The kimberlite was dated by the Rb–Sr technique on phlogopite and additionally by the 40Ar/39Ar method. Because it is highly probable that phlogopite from all pipes crystallized from kimberlite melt, the crystallization age of the kimberlite can be defined as 376 ± 3 Ma for the Grib Pipe, 380 ± 2 Ma for the Karpinskii-1 pipe, 375 ± 2 Ma for the Karpinskii-2 Pipe, and 377 ± 0.4 Ma for the Ermakovskaya-7 Pipe. The age of the pipes coincides within the error and suggests that the melts of the pipes were emplaced almost simultaneously. Our geochronologic data on kimberlite emplacement in ADP lie within the range of 380 ± 2 to 375 ± Ma and coincide with most age values for Devonian alkaline–ultramafic complexes in the Kola Province: 379 ± 5 Ma; Arzamastsev and Wu, 2014). These data indicate that the kimberlite was formed during the early evolution of the Kola Province, when alkaline–ultramafic complexes (including those with carbonatite) were emplaced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkhangel’skaya almazonosnaya provintsiya (Arkhangelsk Diamondiferous Province), Bogatikov, O.A., Ed., Moscow: MGU, 1999.

  • Arzamastsev, A.A., Bea, F., Glaznev, V.N., et al., Kola alkaline province in the Paleozoic: estimation of composition of primary mantle melts and magma generation conditions, Ross. Zh. Nauk Zemle, 2001, vol. 3, no. 1, pp. 3–24.

    Google Scholar 

  • Arzamastsev, A.A., Fedotov, Zh.A., and Arzamastseva, L.V., Daikovyi magmatizm severo-vostochnoi chasti Baltiiskogo shchita (Dike Magmatism of the Northeastern Baltic Shield), St. Petersburg: Nauka, 2009.

    Google Scholar 

  • Arzamastsev, A.A. and Vu, F.Ya., U–Pb geochronology and Sr–Nd isotopic systematics of minerals from the ultrabasic–alkaline massifs of the Kola Province, Petrology, 2014, vol. 22, no. 5, pp. 462–479.

    Article  Google Scholar 

  • Baksi, A.K., Archibald, D.A., and Farrar, E., Intercalibration of 40Ar/39Ar dating standards, Chem. Geol., 1996, vol. 129, pp. 307–324.

    Article  Google Scholar 

  • Baxter, E.F., Quantification of the factors controlling the presence of excess 40Ar or 4He, Earth Planet. Sci. Lett., 2003, vol. 216, pp. 619–634.

    Article  Google Scholar 

  • Bayanova, T.B., Vozrast repernykh geologicheskikh kompleksov Kol’skogo regiona i dlitel’nostkm2 protsessov magmatizma (Age of Reference Geological Complexes of the Kola Region and the Duration of Magmatic Processes), Moscow: Nauka, 2004.

    Google Scholar 

  • Beard, A.D., Downes, H., Hegner, E., et al., Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 288–303.

    Google Scholar 

  • Beard, A.D., Downes, H., Hegner, E., and Sablukov, S.M., Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NWRussia: evidence for transitional kimberlite magma types, Lithos, 2000, vol. 51, pp. 47–73.

    Google Scholar 

  • Brakhfogel’, F.F., Geologicheskie aspekty kimberlitovogo magmatizma severo-vostoka Sibirskoi platformy (Geological Aspects of the Kimberlite Magmatism of Northeastern Siberian Platform) Yakutsk: YaF SOAN SSSR, 1984, vol. 128.

    Google Scholar 

  • O’Brien, H. and Bradley, J., New kimberlite discoveries in Kuusamo, northern finland, Extended Abstract of 9th International Kimberlite Conference, 2008, 9IKC-A-00346.

    Google Scholar 

  • Cas, R.A.F., Hayman, P., Pittari, A., and Porritt, L., Some major problems with existing models and terminology associated with kimberlite pipes from a volcanological perspective, and some suggestions, J. Volcanol. Geotherm. Res., 2008a, vol. 174, pp. 209–225.

    Article  Google Scholar 

  • Cas, R., Porritt, L., Pittari, A., and Hayman, P., A new approach to kimberlite facies terminology using a revised general approach to the nomenclature of all volcanic rocks and deposits: descriptive to genetic, J. Volcanol. Geotherm. Res., 2008b, vol. 174, pp. 226–240.

    Article  Google Scholar 

  • Creaser, R.A., Grutter, H., Carlson, J.C., and Crawford, B., Macrocrystal phlogopite Rb–Sr dates for the Ekati property kimberlites, Slave Province, Canada: evidence for multiple intrusive episodes in the Paleocene and Eocene, Proceeding of the 7th International Kimberlite Conference, Brithish Columbia, Canada, 2004, vol. 1, pp. 399–414.

    Google Scholar 

  • Dahl, P.S., The crystal-chemical basis for Ar retention in micas: inferences from interlayer partitioning and implications for geochronology, Contrib. Mineral. Petrol., 1996, vol. 123, pp. 22–39.

    Article  Google Scholar 

  • Delenitsin, A.A. and Gavrilenko, B.V., Rb-Sr and Sm-Nd age of kimberlites from the Tersky Coast, Kola Peninsula, in Tr. nauchnoi shkoly “Shchelochnoi magmatizm Zemli” (Proceedings of Scientific School “Alkaline Magmatism of the Earth”), Moscow: GEOKhI RAN, 2001.

    Google Scholar 

  • Demaiffe, D., Wiszniewska, J., Krzeminska, E., et al., A hidden alkaline and carbonatite province of Early Carboniferous age in northeast Poland: zircon U–Pb and pyrrhotite Re–Os geochronology, J. Geol., 2013, vol. 121, no. 1, pp. 91–104.

    Article  Google Scholar 

  • Dodson, M.H., Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol., 1973, vol. 40, pp. 259–274.

    Article  Google Scholar 

  • Enggist, A., Chu, L.L., and Luth, R.W., Phase relations of phlogopite with magnesite from 4 to 8 GPa, Contrib. Mineral. Petrol., 2012, pp. 467–481.

    Google Scholar 

  • Foland, K.A., Limited mobility of argon in a metamorphic terrain, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 793–801.

    Article  Google Scholar 

  • Giletti, B., Studies in diffusion. 1: Ar in phlogopite mica, in Geochemical Transport and Kinetics, Hofmann, A., Gilleti, B.J., Yoder, H.S., and Yund, R.A., Washington: Carnegie Institute, 1974.

    Google Scholar 

  • Grassi, D. and Schmidt, M.W., Melting of carbonated pelites at 8–13 GPa: generating K-rich carbonatites for mantle metasomatism, Contrib. Mineral. Petrol., 2011, vol. 162, pp. 169–191.

    Article  Google Scholar 

  • Gregoire, M., Bell, D.R., and Le Roex, A.P., Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited, Contrib. Mineral. Petrol., 2002, vol. 142, pp. 503–625.

    Article  Google Scholar 

  • Heaman, L.M., Kjarsgaard, B.A., and Creaser, R.A., The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration, Lithos, 2003, vol. 71, pp. 153–184.

    Article  Google Scholar 

  • International Stratigraphic Chart. Episodes 36: Chart drafted by K.M. Cohen, S.C. Finney, and P.L. Gibbard, in International Commission on Stratigraphy (2013, updated), 2015, pp. 199–204.

  • Jelsma, H., Barnett, W., Richards, S., and Lister, G., Tectonic setting of kimberlites, Lithos, 2009, vol. 112, pp. 155–165.

    Article  Google Scholar 

  • Kalinkin, M.I., Arzamastsev, A.A., and Polyakov, I.V., Kimberlites and host rocks of the Kola region, Petrologiya, 1993, vol. 1, no. 2, pp. 205–214.

    Google Scholar 

  • Kjarsgaard, B.A., Kimberlite pipe models: significance for exploration, in Ore Deposits and Exploration Technology. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, B. Milkereit, Ed., 2007, pp. 667–677.

    Google Scholar 

  • Kononova, V.A., Golubeva, Yu.Yu., Bogatikov, O.A., and Kargin, A.V., Diamond resource potential of kimberlites from the Zimny Bereg Field, Arkhangel’sk Oblast, Geol. Ore Deposits, 2007, vol. 49, no. 6, pp. 421–441.

    Article  Google Scholar 

  • Koreshkova, M., Downes, H., Glebovitsky, V., et al., Zircon trace element characteristics and ages in granulite xenoliths: a key to understanding the age and origin of the lower crust, Arkhangelsk kimberlite province, Russia, Contrib. Mineral. Petrol., 2014, vol. 167, pp. 167–973.

    Google Scholar 

  • Kramm, U. and Kogarko, L.N., Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola alkaline province, Russia, Lithos, 1994, vol. 32, pp. 225–242.

    Google Scholar 

  • Larchenko, V.A., Stepanov, V.P., Minchenko, G.V., and Pervov, V.A., Age of magmatic rocks, ore-bearing sequence, and Middle Paleozoic reservoirs of the Zimny Bereg diamond district, Arkhangelsk diamond province, in Geologiya almazov—nastoyashchee i budushchee (geologi k 50-letnemu yubileyu g. Mirnyi i almazodobyvayushchei promyshlennosti Rossii) (Diamodn Geology—the Present and the Future (Geologists to the 50th Anniversary of the town of Mirny and Diamond Mining Industry of Russia), Voronezh: VGU, 2005, pp. 322–347.

    Google Scholar 

  • Ludwig, K., Users manual for Isoplot 3.00. A geochronological toolkit for Microsoft Excel, Berkeley Geochronol. Center. Sp. Publ., 2003, no. 4.

  • Mahotkin, I.L., Gibson, S.A., Thompson, R.N., Zhuravlev, D.Z., and Zherdev, P.U., Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Archangelsk region, Russia, J. Petrol., 2000, vol. 41, pp. 201–227.

    Article  Google Scholar 

  • Makhotkin, I., Robi, D.J., Kurszlaukis, S., et al., Age and genetic model of the pipe of the Lomonosovskoe diamond deposits, Arkhangelsk region, northwestern Russia, in Minex forum severo-zapad (Minex Forum Northwest), Petrozavodsk, 2007.

    Google Scholar 

  • Mitchell, R.H., Kimberlites, Orangeites and Related Rocks, New York: Plenium Press, 1995.

    Book  Google Scholar 

  • Peltonen, P., Huhma, H., Tyni, M., and Shimizu, N., Garnet peridotite xenoliths from kimberlites of Finland nature of the continental mantle at an Archaean craton—Proterozoic mobile belt transition, Gurney, J.J., Pascoe, M.D., and Richardson, S.H., Eds., Proceeding of the 7th International Kimberlite Conference, 1999, pp. 664–675.

  • Pervov, V.A., Bogomolov, V.S., and Larchenko, V.A., Rb–Sr age of kimberlites of the Pionerskaya pipe, Arkhangel’sk diamondiferous province, Dokl. Earth Sci., 2005, vol. 400, no. 1, pp. 67–71.

    Google Scholar 

  • Roddick, J.C., Cliff, R.A., and Rex, D.C., The evolution of excess argon in alpine biotites: A 40Ar/39Ar analysis, Earth Planet. Sci. Lett., 1980, vol. 48, pp. 185–208.

    Article  Google Scholar 

  • Sablukov, S.M., On problem of phase formation and age of the volcanic pipes of the Onega Peninsula, Dokl. Akad. Nauk SSSR, 1984, vol. 27, no. 1, pp. 168–170.

    Google Scholar 

  • Sablukov, S.M., On the age of volcanic pipes of the ultrabasic rocks, Tr. TsNIGRI, 1987, no. 218, pp. 24–27.

    Google Scholar 

  • Sablukov, S.M., Volcanism of Zemny Bereg district and petrological criteria for the diamond potential of kimberlites, Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Moscow: TsNIGRI, 1995.

    Google Scholar 

  • Sablukov, S.M. and Sablukova, L.L., Astenospheric effect on the mantle substrate and diversity of kimberlite rocks in Zimni Bereg (Archangelsk province), in Moscow. 9th International Kimberlite Conference Extended Abstract, 2008, no. 9IKC-A-00162.

    Google Scholar 

  • Samsonov, A.V., Nosova, A.A., Tretyachenko, V.V., et al., Collisional sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the Northern East European Platform, Dokl. Earth Sci., 2009, vol. 425, no. 2, pp. 226–230.

    Article  Google Scholar 

  • Sarkar, C., Heamen, L.M., and Pearson, D.G., Duration and periodicity of kimberlite volcanic activity in the Lac de Gras kimberlite field, Canada and some recommendation for kimberlite geochronology, Lithos, 2015, vol. 218–219, pp. 155–166.

    Google Scholar 

  • Sato K., Katsura T., and Ito E., Phase relations of phlogopite with and without enstatite up to 8 GPa: implication to potassic magmatism and mantle metasomatism, Technical Report of ISEI, 1996, Ser. A., no. 65, p. 20.

    Google Scholar 

  • Scott Smith, B.H., Nowicki, T.E., Russell, J.K., et al., Terminology and classification, Proceedings of Xth International Kimberlite Conference. Bangalor. India, 2012, vol. 2, pp. 1–17.

    Google Scholar 

  • Shchukin, V.S., Sablukov, S.M., Sablukova, L.I., et al., Rift-type Late Vendian aerial alkaline volcanism in the Zimny Bereg kimberlite district, Arkhangelsk diamond province, in Glubinnyi magmatizm i problemy plyumov (Deep-Seated Magmatism and Problems of Plumes), Irkutsk–Vladivostok: IrFGU, 2002, pp. 151–165.

    Google Scholar 

  • Shchukina, E.V., Agashev, A.M., Golovin, N.N., and Pokhilenko, N.P., Equigranular eclogites from the V. Grib kimberlite pipe: evidence for Paleoproterozoic subduction on the territory of the Arkhangelsk diamondiferous province, Dokl. Earth Sci., 2015, vol. 462, no. 2, pp. 497–501.

    Article  Google Scholar 

  • Shevchenko, S.S., Petrov, O.V., and Lokhov, K.I., Isotope studies in VSEGEI: prospects of application in prediction and search for diamond deposits, Regional. Geol. Metallogen., 2004, no. 27, pp. 158–167.

    Google Scholar 

  • Tappe, S., Foley, S.F., Jenner, G.A., et al., Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton, J. Petrol., 2006, pp. 1–55.

    Google Scholar 

  • Thomsen, T.B. and Schmidt, M.W., Melting of carbonaceous pelites at 2.5–5.0 Gpa,silicate–carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle, Earth Planet. Sci. Lett., 2008, vol. 267, pp. 17–31.

    Article  Google Scholar 

  • Tretyachenko, V.V., Metallogenic Zoning of the Kimberlite District of the Southeastern Belomorian Area, Extended Abstract of Candidate (Geol.-Min.) Dissertation in Geology and Mineralogy, Moscow: Mosk. Gos. Univ., 2008.

    Google Scholar 

  • Tretyachenko, V.V., Bovkun, A.V., Garanin, K.V., Garanin, V.K., and Tretyachenko, N.G., Formation features of the Early-Hercynic alkaline-ultrabasic and basic volcanic complexes and diamondiferous criteria of the kimberlites from Zimny Bereg area (north-west of Archangelsk region, Russia), Proceeding of the Xth International Kimberlite Conference, Bangalor.,India, 2012, p. 4.

    Google Scholar 

  • Tretyachenko, V.V., Garanin, V.K., Bovkun, A.V., and Garanin, K.V., Alkaline magmatism of the Earth and related strategic metal deposits, in Proceedings of 32nd International Conference, Kogarko, L.N., Ed., Moscow: GEOKHI RAS, 2015.

    Google Scholar 

  • Verichev, E.M., Sablukov, S.M., Sablukova, L.I., and Zhuravlev, D.Z., A new type of diamond-bearing kimberlite from the Zimnii Bereg, the Arkhangelsk diamond province, Dokl. Earth Sci., 1999, vol. 368, no. 2, pp. 890–893.

    Google Scholar 

  • Verichev, E.M., Geological conditions of formation and prospecting of V. Grib diamond deposit, Extended Abstract of Cand. Sci. (Geolmin) Dissertation, Moscow: MGU, 2002.

    Google Scholar 

  • Verichev, E.M., Garanin, V.K., Garanin, K.V., et al., Geology, composition, formation and prospecting technique of the V. Grib kimberlite pipe, in Problemy prognozirovaniya, poiskov i izucheniya mestorozhdenii poleznykh iskopaemykh na poroge XXI veka (Problems of Prediction, Search, and Study of Mineral Resources on the Turn of 21th Centruty), Voronezh: Voronezhskii gosudarstvennyi universitet, 2003, pp. 43–48.

    Google Scholar 

  • York, D., Least squares fitting of a straight line with correlated errors, Earth Planet. Sci. Lett., 1969, vol. 5, pp. 320–324.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nosova.

Additional information

Original Russian Text © Yu.O. Larionova, L.V. Sazonova, N.M. Lebedeva, A.A. Nosova, V.V. Tretyachenko, A.V. Travin, A.V. Kargin, D.S. Yudin, 2016, published in Petrologiya, 2016, Vol. 24, No. 6, pp. 607–639.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionova, Y.O., Sazonova, L.V., Lebedeva, N.M. et al. Kimberlite age in the Arkhangelsk Province, Russia: Isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite. Petrology 24, 562–593 (2016). https://doi.org/10.1134/S0869591116040020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591116040020

Navigation