Skip to main content
Log in

Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the south Yenisei Ridge and tectonic implications

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

This study provides the first evidence for the occurrence of ultrahigh-temperature (UHT) granulite-facies metamorphism in the Yenisei Ridge (Angara–Kan block). UHT metamorphism is documented in Fe-Al-rich metapelites on the basis of the garnet–hypersthene–sillimanite–cordierite–plagioclase–biotite–spinel–quartz–K-feldspar assemblage. Microtextural relationships and compositional data for paragneisses of the Kan complex attest to three distinct metamorphic episodes: (M1) pre-peak prograde (820⎯900°C/5.5–7 kbar), (M2) peak UHT (920–1000°C/7–9 kbar), and (M3) post-peak retrograde (770⎯900°C/5.5–7.5 kbar). The observed counterclockwise P–T evolution at a high geothermal gradient (dT/dP = 100–200°C/kbar) suggests that UHT metamorphic assemblages were formed in an overall extensional tectonic setting accompanied by underplating of mantle-derived mafic magmas, which may be sourced from ~1750 Ma giant radiating dike swarms linked to the Vilyuy mantle plume as part of the Trans-Siberian LIP. The broad synchroneity of UHT metamorphism (1744 ± 26 Ma; monazite–zircon isochron age) and rift-related endogenic activity in the region can provide an additional line of evidence for the two-stage evolution of granulite-facies metamorphism in the Angara–Kan block. The Aldan–Stanovoy, Anabar, and Baikal basement inliers of high-grade metamorphic rocks within the Siberian craton record two Paleoproterozoic peaks (1.9 and 1.75 Ga) of granulite-facies metamorphism. The synchronous sequence of tectonothermal events at the periphery of the large Precambrian Laurentian, Baltica, and Siberian cratons provide convincing evidence for their spatial proximity over a wide time interval, which is consistent with the most recent paleomagnetic reconstructions of the Proterozoic supercontinent Nuna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ague, J.J., Evidence for major mass transfer and volume strain during regional metamorphism of pelites, Geology, 1991, vol. 19, pp. 855–858.

    Article  Google Scholar 

  • Aranovich, L.Y. and Berman, R.G., A new garnet–orthopyroxene thermometer based on reversed Al2O3 solubility in FeO–Al2O3–SiO2 orthopyroxene, Am. Mineral., 1997, vol. 82, pp. 345–353.

    Article  Google Scholar 

  • Berman, R.G. and Aranovich, L.Y., Optimized standard state and solution properties of minerals, Contrib. Mineral. Petrol., 1996, vol. 126, nos. 1–2, pp. 1–24.

    Article  Google Scholar 

  • Bhattacharya, A., Krishnakumar, K.R., Raith, M., and Sen, S.K., An improved set of a–X parameters for Fe–Mg–Ca garnets and refinements of the orthopyroxene–garnet thermometer and the orthopyroxene–garnet–plagioclase–quartz barometer, J. Petrol., 1991, vol. 32, pp. 629–656.

    Article  Google Scholar 

  • Bibikova, E.V., Gracheva, T.V., Makarov, V.A., and Nozhkin, A.D., Age boundaries in the geological evolution of the Early Precambrian of the Yenisei Range, Stratigr. Geol. Korrelyatsiya, 1993, vol. 1, no. 1, pp. 35–40.

    Google Scholar 

  • Carrington, D.P. and Harley, S.L., Partial melting and phase relations in high-grade metapelites: an experimental grid in the KFMASH system, Contrib. Mineral. Petrol., 1995, vol. 120, pp. 270–291.

    Article  Google Scholar 

  • Dahl, P.S., The thermal–compositional dependence of Fe2+–Mg distributions between coexisting garnet and pyroxene: applications to geothermometry, Am. Mineral., 1980, vol. 65, pp. 852–866.

    Google Scholar 

  • Dobretsov, N.L., Kirdyashkin, A.G., and Kirdyashkin, A.A., Glubinnaya geodinamika (Deep Geodynamics), Novosibirsk: SO RAN, fil. “GEO”, 2001.

    Google Scholar 

  • Evans, D.A.D. and Mitchell, R.N., Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna, Geology, 2011, vol. 39, no. 5, pp. 443–446.

    Article  Google Scholar 

  • Frost, C.D. and Frost, B.R., On ferroan (A-type) granitoids: their compositional variability and modes of origin, J. Petrol., 2011, vol. 52, pp. 39–53.

    Article  Google Scholar 

  • Gladkochub, D.P., Pisarevsky, S.A., Donskaya, T.V., Ernst, R.E., Wingate, M.T.D., Sö derlund, U., Mazukabzov, A.M., and Sklyarov, E.V., Proterozoic mafic magmatism in Siberian craton: an overview and implications for paleocontinental reconstruction, Precambrian Res., 2010, vol. 183, pp. 660–668.

    Article  Google Scholar 

  • Harley, S.L., An experimental study of partitioning of Fe and Mg between garnet and orthopyroxene, Contrib. Mineral. Petrol., 1984, vol. 86, pp. 359–373.

    Article  Google Scholar 

  • Harley, S.L. and Motoyoshi, Y., Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120°C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine, Contrib. Mineral. Petrol., 2000, vol. 138, pp. 293–307.

    Article  Google Scholar 

  • Harley, S.L., Refining the P-T records of UHT crustal metamorphism, J. Metamorph. Geol., 2008, vol. 26, pp. 125–154.

    Article  Google Scholar 

  • Holdaway, M.J., Application of new experimental and garnet Margules data to the garnet–biotite geothermometer, Am. Mineral., 2000, vol. 85, pp. 881–892.

    Article  Google Scholar 

  • Kelsey, D.E. and Hand, M., On ultrahigh temperature crustal metamorphism: phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings, Geosci. Front., 2015, vol. 6, pp. 311–356.

    Article  Google Scholar 

  • Korikovsky, S.P., Fatsii metamorfizma metapelitov (Metamorphic Facies of Metapelites), Moscow: Nauka, 1979.

    Google Scholar 

  • Kozlov, P.S., Likhanov, I.I., Reverdatto, V.V., and Zinov’ev, S.V., Tectonometamorphic evolution of the Garevka polymetamorphic complex, Yenisei Range, Russ. Geol. Geophys., 2012, vol. 53, no. 11, pp. 1133–1149.

    Article  Google Scholar 

  • Lal, R.K., Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet–orthopyroxene–plagioclase–quartz assemblages and their application to the South Indian granulites, J. Metamorph. Geol., 1993, vol. 11, pp. 855–866.

    Article  Google Scholar 

  • Lee, H.Y. and Ganguly, J., Equilibrium compositions of coexisting orthopyroxene and garnet: experimental determinations in the system FeO–MgO–Al2O3–SiO2, J. Petrol., 1988, vol. 29, pp. 93–113.

    Article  Google Scholar 

  • Likhanov, I.I. and Reverdatto, V.V., Provenance of Precambrian Feand Al-rich metapelites in the Yenisey Ridge and Kuznetsk Alatau, Siberia: geochemical signatures, Acta Geol. Sin. (Engl. Ed.), 2007, vol. 81, pp. 409–423.

    Article  Google Scholar 

  • Likhanov, I.I. and Reverdatto, V.V., Geochemistry, age, and petrogenesis of rocks from the Garevka metamorphic complex, Yenisey Ridge, Geochem. Int., 2014a, vol. 52, no. 1, pp. 1–21.

    Article  Google Scholar 

  • Likhanov, I.I. and Reverdatto, V.V., P–T–t constraints on the metamorphic evoluiton of the Transangarian Yenisei Ridge: geodynamic and petrological implications, Russ. Geol. Geophys., 2014b, vol. 55, no. 3, pp. 299–322.

    Article  Google Scholar 

  • Likhanov, I.I. and Reverdatto, V.V., Evidence of Middle Neoproterozoic extensional tectonic settings along the western margin of the Siberian Craton: implications for the breakup of Rodinia, Geochem. Int., 2015, vol. 53, no. 8, pp. 671–689.

    Article  Google Scholar 

  • Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., and Sukhorukov, V.P., P-T-t constraints on polymetamorphic complexes of the Yenisey Ridge, East Siberia: implications for Neoproterozoic paleocontinental reconstructions, J. Asian Earth Sci., 2015, vol. 113, pp. 391–410.

    Article  Google Scholar 

  • Likhanov, I.I., Polyansky, O.P., Reverdatto, V.V., and Memmi, I., Evidence from Feand Al-rich metapelites for thrust loading in the Transangarian Region of the Yenisey Ridge, Eastern Siberia, J. Metamorph. Geol, 2004, vol. 22, pp. 743–762.

    Article  Google Scholar 

  • Likhanov, I.I., Kozlov, P.S., Popov, N.V., Reverdatto, V.V., and Vershinin, A.E., Collisional metamorphism as a result of thrusting in the Transangara Region of the Yenisei Ridge, Dokl. Earth Sci., 2006, vol. 411, no. 2, pp. 1313–1317.

    Article  Google Scholar 

  • Likhanov, I.I. and Reverdatto, V.V., Lower Proterozoic metapelites in the northern Yenisei Range: nature and age of the protolith and the behavior of material during collisional metamorphism, Geochem. Int., 2011, vol. 49, no. 3, pp. 224–252.

    Article  Google Scholar 

  • Likhanov, I.I., Reverdatto, V.V., and Kozlov, P.S., Collisionrelated metamorphic complexes of the Yenisei Ridge: their evolution, ages, and exhumation rate, Russ. Geol. Geophys., 2011, vol. 52, no. 10, pp. 1256–1269.

    Article  Google Scholar 

  • Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., and Khiller, V.V., The first data on Mesoproterozoic tectonic events in the geological history of the south Yenisei Ridge, Dokl. Earth Sci., 2013a, vol. 453, no. 2, pp. 1274–1277.

    Article  Google Scholar 

  • Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Khiller, V.V., and Sukhorukov, V.P., Three metamorphic events in the Precambrian P–T–t history of the Transangarian Yenisey Ridge recorded in garnet grains in metapelites, Petrology, 2013b, vol. 21, no. 6, pp. 561–578.

    Article  Google Scholar 

  • Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., and Zinov’ev, S.V., Neoproterozoic metamorphic evolution in the Transangarian Yenisei Ridge: evidence from monazite and xenotime geochronology, Dokl. Earth Sci., 2013c, vol. 450, no. 1, pp. 556–561.

    Article  Google Scholar 

  • Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., and Kozlov, P.S., Grenville tectonic events and evolution of the Yenisei Ridge at the western margin of the Siberian Craton, Geotectonics, 2014, vol. 48, no. 5, pp. 371–389.

    Article  Google Scholar 

  • Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V., Kozlov, P.S., and Khiller, V.V., P–T evolution of ultrahigh temperature metamorphism: evidence for a Late Paleoproterozoic intraplate extension at the southwestern margin of the Siberian Craton, Dokl. Earth Sci., 2015a, vol. 465, no. 1, pp. 1139–1142.

    Article  Google Scholar 

  • Likhanov, I.I., Reverdatto, V.V., Kozlov, P.S., Zinoviev, S.V., and Khiller, V.V., P-T-t reconstructions of south Yenisei Ridge metamorphic history (Siberian Craton): petrological consequences and application to the supercontinental cycles, Russ. Geol. Geophys., 2015b, vol. 56, no. 6, pp. 805–824.

    Article  Google Scholar 

  • Neimark, L.A., Nemchin, A.A., and Rozen, O.M., Sm-Nd isotope systems in the lower crustal xenoliths from Yakutiak kimberlites, Dokl. Akad. Nauk, 1992, vol. 327, no. 3, pp. 374–378.

    Google Scholar 

  • Nozhkin, A.D., Turkina, O.M., Likhanov, I.I., and Dmitrieva, N.V., Late Paleoproterozoic volcanic associations in the southwestern Siberian Craton (Angara–Kan block), Russ. Geol. Geophys., 2016, vol. 57, no. 2, pp. 247–264.

    Article  Google Scholar 

  • Nozhkin, A.D., Turkina, O.M., and Bayanova, T.B., Paleoproterozoic collisional and intraplate granitoids of the southwest margin of the Siberian Craton: petrogeochemical features and U-Pb geochronological and Sm-Nd isotopic data, Dokl. Earth Sci., 2009, vol. 428, no. 7, pp. 1192–1197.

    Article  Google Scholar 

  • Pattison, D.R.M., Chacko, T., Farquhar, J., and McFarlane, C.R.M., Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange, J. Petrol., 2003, vol. 44, pp. 867–900.

    Article  Google Scholar 

  • Perchuk, L.L., Gerya, T., and Nozhkin, A., Petrology and retrograde P-t path in granulites of the Kanskaya Formation, Yenisey Range, Eastern Siberia, J. Metamorph. Geol., 1989, vol. 7, pp. 599–617.

    Article  Google Scholar 

  • Perchuk, L.L., Derivation of a thermodynamically consistent set of geothermometers and geobarometers for metamorphic and magmatic rocks, in Progress in Metamorphic and Magmatic Petrology, Perchuk, L.L., Ed., Cambridge: Cambridge University Press, 1991, pp. 93–112.

    Chapter  Google Scholar 

  • Popov, N.V., A tectonic model of the Early Precambrian evolution of the south Yenisei Range, Russ. Geol. Geophys., 2001, vol. 42, no. 7, pp. 1028–1041.

    Google Scholar 

  • Powell, R. and Holland, T.J.B., Optimal geothermometry and geobarometry, Am. Mineral., 1994, vol. 79, pp. 120–133.

    Google Scholar 

  • Rosen, O.M., Condie, K.C., Natapov, L.M., and Nozhkin, A.D., Archean and early Proterozoic evolution of the Siberian craton, a preliminary assessment, in Archean Crustal Evolution, Condie, K.S, Ed., Amsterdam: Elsevier, 1994, pp. 411–459.

    Chapter  Google Scholar 

  • Sandiford, M. and Powell, R., Some remarks on high-temperature–low-pressure metamorphism in convergent orogens, J. Metamorph. Geol., 1991, vol. 9, pp. 333–340.

    Article  Google Scholar 

  • Sen, S.K. and Bhattacharya, A., An orthopyroxene–garnet thermometer and its application to the Madras charnockites, Contrib. Mineral. Petrol., 1984, vol. 88, pp. 64–71.

    Article  Google Scholar 

  • Symmes, G.H. and Ferry, J.M., The effect of whole-rock MnO content on the stability of garnet in pelitic schists during metamorphism, J. Metamorph. Geol., 1992, vol. 10, pp. 221–237.

    Article  Google Scholar 

  • Taylor, S.R. and Mak-Lennan, S.M., The Continental Crust: Its Composition and Evolution, Blackwell: Oxford, 1988.

    Google Scholar 

  • Thompson, A.B., Mineral reactions in pelitic rocks: II. Calculation of some P-T-x(Fe–Mg) phase relations, Am. J. Sci., 1976, vol. 276, pp. 425–454.

    Article  Google Scholar 

  • Turkina, O.M., Bibikova, E.V., and Nozhkin, A.D., Stages and geodynamic settings of Early Proterozoic granite formation on the southwestern margin of the Siberian Craton, Dokl. Earth Sci., 2003, vol. 389, no. 2, pp. 159–163.

    Google Scholar 

  • Turkina, O.M., Berezhnaya, N.G., Lepekhina, E.N., and Kapitonov, I.N., Age of mafic granulites from the Early Precambrian metamorphic complex of the Angara–Kan Terrain (southwestern Siberian Craton): U–Pb and Lu–Hf isotope and REE composition of zircon, Dokl. Akad. Nauk, 2012, vol. 445, no. 2, pp. 986–993.

    Google Scholar 

  • White, R.W., Powell, R., and Clarke, G.L., The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave block, Central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3, J. Metamorph. Geol., 2002, vol. 20, pp. 41–55.

    Article  Google Scholar 

  • Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Likhanov.

Additional information

Original Russian Text © I.I. Likhanov, A.D. Nozhkin, V.V. Reverdatto, A.A. Krylov, P.S. Kozlov, V.V. Khiller, 2016, published in Petrologiya, 2016, Vol. 24, No. 4, pp. 423–440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhanov, I.I., Nozhkin, A.D., Reverdatto, V.V. et al. Metamorphic evolution of ultrahigh-temperature Fe- and Al-rich granulites in the south Yenisei Ridge and tectonic implications. Petrology 24, 392–408 (2016). https://doi.org/10.1134/S086959111603005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S086959111603005X

Navigation