Skip to main content
Log in

Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk diamond province, Russia: Types, composition, and origin

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

We report the first systematic study of different textural varieties of olivine (olivine from peridotite xenoliths, macrocryst-type Ol-I, and phenocryst-type zoned Ol-II) from two diamondiferous kimberlite pipes of the Arkhangelsk diamond province (V. Grib and Pionerskaya) differing in geologic setting, geochemical and isotopic characteristics, and diamond content. Approximately 550 olivine analyses were obtained by the EPMA technique using the precise method of Sobolev et al. (2007) adapted at the Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences (Kargin et al., 2014). Olivines from the V. Grib moderate-Ti kimberlites, which are similar to Group I kimberlites in geochemical and Sr-Nd isotopic characteristics and rich in diamond, are dominated by high-Mg# low-Ti Ol-I formed owing to the fractional crystallization of a carbonate-rich protokimberlite melt interacting with orthopyroxene-bearing peridotite material; the fraction of high-Ti Ol-I produced by the metasomatic alteration of peridotite under the influence of silicate aqueous fluids is significantly lower; and xenocrysts weakly affected by metasomatic agents (melts and fluids) occur in minor amounts. Olivines from the low-Ti Pionerskaya kimberlites, which are similar to Group II kimberlites in geochemical and Sr-Nd isotopic characteristics and show a moderate diamond content, are dominated by high-Ti Ol-I, and xenocrysts weakly affected by metasomatic agents are also abundant. In the kimberlites of both pipes, the cores of Ol-II crystals are usually composed of low-Ti olivine similar in composition to Ol-I; both high-Ti and low-Ti olivine cores occur in the Pionerskaya pipe; whereas cores corresponding to high-Ti Ol-I were never found in the V. Grib pipe. The outer zones of olivine and small olivine grains in the groundmass show considerable variations in minor element contents within a narrow Mg# range. It is suggested that the high-Ti rims of Ol-II from the V. Grib and Pionerskaya kimberlites were produced by the late crystallization of kimberlite melt, and the low-Ti rims on the outer zones of Ol-II in the Pionerskaya kimberlites were formed by late-stage equilibration with an aqueous fluid separated from the kimberlite melt and/or possible kinetic effects. Our study revealed the diversity of olivine origin in the kimberlites and showed that there is no single mechanism of olivine formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afanasiev, V.P., Ashchepkov, I.V., Verzhak, V.V., et al., P-T conditions and trace element variations of picroilmenites and pyropes from placers and kimberlites in the Arkhangelsk region, NW Russia, J. Asian Earth Sci., 2013, vol. 5, pp. 70–71.

    Google Scholar 

  • Agee, J.J., Garrison, J.R., and Taylor, L.A., Petrogenesis of oxide minerals in kimberlite, Elliott County, Kentucky (USA), Am. Mineral., 1982, vol. 67, pp. 28–42.

    Google Scholar 

  • Arkhangel’skaya almazonosnaya provintsiya (Arkhangelsk Diamond Province), Bogatikov, O.A., Ed., Moscow: Izd-vo MGU, 1999.

    Google Scholar 

  • Arndt, N.T., Guitreau, M., Boullier, A.M., et al., Olivine and the origin of kimberlite, J. Petrol., 2010, vol. 51, pp. 573–602.

    Article  Google Scholar 

  • Beard, A.D., Downes, H., and Hegner, E., Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites, Contrib. Mineral. Petrol., 1998, vol. 130, pp. 288–303.

    Article  Google Scholar 

  • Berry, A., Hermann, J., O’Neill, H.St.C., and Foran, G.J., Fingerprinting the water site in mantle olivine, Geology, 2007, vol. 33, pp. 869–872.

    Article  Google Scholar 

  • Bogatikov, O.A., Kononova, V.A., Pervov, V.A., and Zhuravlev, D.Z., Sources, geodynamic setting of formation, and diamond-bearing potential of kimberlites from the northern margin of the Russian Plate: a Sr-Nd isotopic and ICP-MS geochemical study, Petrology, 2001, vol. 9, no. 3, pp. 191–203.

    Google Scholar 

  • Bogatikov, O.A., Kononova, V.A., Nosova, A.A., and Kondrashov, I.A., Kimberlites and lamproites of the East European Platform: petrology and geochemistry, Petrology, 2007, vol. 16, no. 4, pp. 339–360.

    Google Scholar 

  • Bogatikov, O.A., Kononova, V.A., Nosova, A.A., and Kargin, A.V., Polygenetic sources of kimberlites, magma composition, and diamond potential exemplified by the East European and Siberian cratons, Petrology, 2009, vol. 17, no. 6, pp. 606–625.

    Article  Google Scholar 

  • Boyd, F.R. and Nixon, P.H., Origin of the ultramafic nodules from some kimberlites of northern Lesotho and the Monastery Mine, South Africa, Phys. Chem. Earth, 1975, vol. 9, pp. 431–454.

    Article  Google Scholar 

  • Brett, R.C., Russell, J.K., and Moss, S., Origin of olivine in kimberlite: phenocryst or imposter, Lithos, 2009, vol. 112S, pp. 201–212.

    Article  Google Scholar 

  • Brey, G.P., Bulatov, V.K., Girnis, A.V., and Lahaye, Y., Experimental melting of carbonated peridotite at 6–10 GPa, J. Petrol., 2008, vol. 49, pp. 797–821.

    Article  Google Scholar 

  • Brey, G.P. and Köhler, T., Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers, J. Petrol., 1990, vol. 31, pp. 1353–1378.

    Article  Google Scholar 

  • Burgess, S.R. and Harte, B., Tracing lithosphere evolution through the analysis of heterogeneous G9-G10 garnet in peridotite xenoliths. I: Major element chemistry, Proceedings of 7th International Kimberlite Conference, Cape Town: Red Roof Design, 1999, vol. 1, pp. 66–80.

    Google Scholar 

  • Burgess, S.R. and Harte, B., Tracing lithosphere evolution through the analysis of heterogeneous G9/G10 garnet in peridotite xenoliths. II: REE chemistry, J. Petrol., 2004, vol. 45, pp. 609–634.

    Article  Google Scholar 

  • Caro, G., Kopylova, M.G., and Creazer, R.A., The hypabyssal 5034 kimberlite of Gancho Kue cluster, southeastern Slave Craton, Northwest Territories, Canada: a granite-contaminated group-I kimberlite, Can. Mineral., 2004, vol. 42, pp. 183–207.

    Article  Google Scholar 

  • Chepurov, A.I., Zhimulev, E.I., Agafonov, L.V., et al., The stabilty of ortho and clinopyroxenes, olivine, and garnet in kimberlitic magma, Russ. Geol. Geophys., 2013, vol. 54, no. 4, pp. 533–544.

    Article  Google Scholar 

  • Dalton, J.A. and Wood, B.J., The partitioning of Fe and Mg between olivine and carbonate and the stability of carbonate under mantle conditions, Contrib. Mineral. Petrol., 1993, vol. 114, no. 4, pp. 501–509.

    Article  Google Scholar 

  • Dasgupta, R., Hirschmann, M.M., McDonough, W.F., et al., Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts, Chem. Geol., 2009, vol. 262, pp. 57–77.

    Article  Google Scholar 

  • De Hoog, J.C., Gall, L., and Cornell, D.H., Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 2010, vol. 270, pp. 196–215.

    Article  Google Scholar 

  • De Hoog, J.C.M., Hattori, K., and Jung, H., Titanium- and water-rich metamorphic olivine in high-pressure serpentinites from the Voltri Massif (Ligurian Alps, Italy): evidence for deep subduction of high-field strength and fluidmobile elements, Contrib. Mineral. Petrol., 2014, vol. 167, pp. 990–1005. DOI: 10.1007/s00410-014-0990-x.

    Article  Google Scholar 

  • DePaolo, D.J., Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization, Earth Planet. Sci. Lett., 1981, vol. 53, pp. 189–202.

    Article  Google Scholar 

  • Ehrenberg, S.N., Garnetiferous ultramafic inclusions in minette from the Navajo Volcanic Field, in Proceedings of 2th International Kimberlite Conference, Boyd, F.R. and Meyer, H.O.A., Eds., Washington, DC: American Geophysical Union, 1979, vol. 2, pp. 330–344.

    Google Scholar 

  • Fabbrizio, A., Stalder, R., Hametner, K., et al., Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1300°C, Contrib. Mineral. Petrol., 2013, vol. 166, pp. 639–653.

    Article  Google Scholar 

  • Fedortchouk, Y. and Canil, D., Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival, J. Petrol., 2004, vol. 45, pp. 1725–1745.

    Article  Google Scholar 

  • Fedortchouk, Y., Matveev, S., and Carlson, J.A., H2O and CO2 in kimberlitic fluid as recorded by diamonds and olivines in several Ekati diamond mine kimberlites, Northwest Territories, Canada, Earth Planet. Sci. Lett., 2010, vol. 289, pp. 549–559.

    Article  Google Scholar 

  • Foley, S.F., Prelevic, D., Rehfeldt, T., and Jacob, D.E., Minor and trace elements in olivines as probes into early igneous and mantle melting processes, Earth Planet. Sci. Lett., 2013, vol. 363, pp. 181–191.

    Article  Google Scholar 

  • Fournelle, J., An investigation of “San Carlos olivine”: comparing USNM-distributed material with commercially available material, Microscop. Microanal., 2011, vol. 17, pp. 842–843. DOI:10.1017/S1431927611005083.

    Article  Google Scholar 

  • Gaetani, G.A., O’Leary, J.A., Koga, K.T., et al., Hydration of mantle olivine under variable water and oxygen fugacity conditions, Contrib. Mineral. Petrol., 2014, vol. 167, p. 965.

    Article  Google Scholar 

  • Gaul, O.F., Griffin, W.L., O’Reilly, S.Y., and Pearson, N.J., Mapping olivine composition in the lithospheric mantle, Earth Planet. Sci. Lett., 2000, vol. 182, pp. 223–235.

    Article  Google Scholar 

  • Girnis, A.V., Bulatov, V.K., and Brey, G.P., Transition from kimberlite to carbonatite melt under mantle parameters: an experimental study, Petrology, 2005, vol. 13, no. 1, pp. 1–15.

    Google Scholar 

  • Girnis, A.V., Bulatov, V.K., Brey, G.P., et al., Trace element partitioning between mantle minerals and silico-carbonate melts at 6–12 GPa and applications to mantle metasomatism and kimberlite genesis, Lithos, 2013, vol. 160–161, pp. 183–200.

    Article  Google Scholar 

  • Giuliani, A., Phillips, D., Kamenetsky, V.S., et al., Petrogenesis of mantle polymict breccias: insights into mantle processes coeval to kimberlite magmatism, J. Petrol., 2014, vol. 55, pp. 831–858.

    Article  Google Scholar 

  • Golubkova, A.B., Nosova, A.A., and Larionova, Yu.O., Mg-ilmenite megacrysts from the Arkhangelsk kimberlites, Russia: genesis and interaction with kimberlite melt and postkimberlite fluid, Geochem. Int., 2013, vol. 51, no. 5, p. 353–381.

    Article  Google Scholar 

  • Griffin, W.L., O’Reilly, S.Y., Natapov, L.M., and Ryan, C.G., The evolution of lithospheric mantle beneath the Kalahari Craton and its margins, Lithos, 2003, vol. 71, pp. 215–241.

    Article  Google Scholar 

  • Gurenko, A.A., Sobolev, A.V., Hoernle, K.A., et al., Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle, Earth Planet. Sci. Lett., 2009, vol. 277, nos. 3–4, pp. 514–524.

    Article  Google Scholar 

  • Gurney, J.J., Harris, J.W., and Richardson, R.S., Silicate and oxide inclusions in diamonds from the Finsch kimberlite pipe, in Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry, Boyd, F.R. and Meyer, H.O.A., Eds., Washington, DC: Am. Geophys. Union, 1979, pp. 1–15.

    Chapter  Google Scholar 

  • Herzberg, C., Asimow, P.D., Ionov, D.A., et al., Nickel and helium evidence for melt above the core-mantle boundary, Nature, 2013, vol. 493, no. 7432, pp. 393–398.

    Article  Google Scholar 

  • Hilchie, L., Fedortchouk, Y., Matveev, S., and Kopylova, M.G., The origin of high hydrogen content in kimberlitic olivine: evidence from hydroxyl zonation in olivine from kimberlites and mantle xenoliths, Lithos, 2014, vol. 202–203, pp. 429–441.

    Article  Google Scholar 

  • Ionov, D.A., Doucet, L.S., and Ashchepkov, I.V., Composition of the lithospheric mantle in the Siberian Craton: new constraints from fresh peridotites in the Udachnaya-East kimberlite, J. Petrol., 2010, vol. 51, no. 11, pp. 2177–2210.

    Article  Google Scholar 

  • Jacobs, D.A.B., Orthopyroxene stability within kimberlite magma: an experimental investigation, MSc Thesis, Stellenbosch University, 2012.

    Google Scholar 

  • Jarosewich, E., Nelen, J.A., and Norberg, J.A., Reference samples for electron microprobe analysis, Geost. Geoanal. Res., 1980, vol. 4, pp. 43–47.

    Article  Google Scholar 

  • Kamenetsky, V.S., Belousova, E.A., Giuliani, A., et al., Chemical abrasion of zircon and ilmenite megacrysts in the Monastery kimberlite: implications for the composition of kimberlite melt, Chem. Geol., 2014, vol. 383, pp. 76–85.

    Article  Google Scholar 

  • Kamenetsky, V.S., Kamenetsky, M.B., and Maas, R., New identity of the kimberlite melt: constraints from unaltered diamondiferous Udachnaya-East pipe kimberlite, Russia, in Advances in Data, Methods, Models and Their Applications in Geoscience, Dong Mei Chen, Ed., 2011, pp. 181–214. ISBN: 978-953-307-737-6.

    Google Scholar 

  • Kamenetsky, V., Kamenetsky, M., Sobolev, A., et al., Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins, J. Petrol., 2008, vol. 49, pp. 823–839.

    Article  Google Scholar 

  • Kargin, A.V., Geochemistry of mantle metasomatism related to formation of kimberlites in the northern East European Platform, Geol. Ore Dep., 2014, vol. 56, no. 6, pp. 409–430.

    Article  Google Scholar 

  • Kargin, A.V., Nosova, A.A., Larionova, Yu.O., et al., Mesoproterozoic orangeites (kimberlites II) of West Karelia: mineralogy, geochemistry, and Sr-Nd isotope composition, Petrology, 2014, vol. 22, no. 2, pp. 151–183.

    Article  Google Scholar 

  • Katayama, I., Michibayashi, K., Terao, R., et al., Water content of the mantle xenoliths from Kimberley and implications for explaining textural variations in cratonic roots, Geol. J., 2010, vol. 45, pp. 1–10.

    Article  Google Scholar 

  • Kennedy, L.A., Russell, J.K., and Kopylova, M.G., Mantle shear zones revisited: the connection between the cratons and mantle dynamics, Geology, 2002, vol. 30, no. 5, pp. 419–422.

    Article  Google Scholar 

  • Kononova, V.A., Golubeva, Yu.Yu., Bogatikov, O.A., and Kargin, A.V., Diamond resource potential of kimberlites from the Zimny Bereg Field, Arkhangel’sk oblast, Geol. Ore Dep., 2007, vol. 49, no. 6, pp. 483–505.

    Article  Google Scholar 

  • Kononova, V.A., Levskii, L.K., Pervov, V.A., et al., Pb-Sr-Nd isotopic systematics of mantle sources of potassic ultramafic and mafic rocks in the north of the East European Platform, Petrology, 2002, vol. 10, no. 5, pp. 433–447.

    Google Scholar 

  • Kononova, V.A., Nosova, A.A., Pervov, V.A., and Kondrashov, I.A., Compositional variations in kimberlites of the East European Platform as a manifestation of sublithospheric geodynamic processes, Dokl. Earth Sci., 2006, vol. 409A, no. 6, pp. 952–957.

    Article  Google Scholar 

  • Kostrovitsky, S.I., Geokhimicheskie osobennosti mineralov kimberlitov (Geochemical Features of Kimberlite Minerals), Novosibirsk: Nauka, 1986.

    Google Scholar 

  • Kostrovitsky, S.I., Mineralogy and Geochemistry of Kimberlites of West Yakutia Extended Abstracts of Candidate’s Dissertation in Geology and Mineralogy, Irkutsk: Institut geokhimii im. A.P. Vinogradova SO RAN, 2009.

    Google Scholar 

  • Kostrovitsky, S.I., Alymova, N.V., Yakovlev, D.A., et al., Origin of garnet megacrysts from kimberlites, Dokl. Earth Sci., 2008, vol. 420, no. 4, pp. 636–640.

    Article  Google Scholar 

  • Kostrovitsky, S.I., Malkovets, V.G., Verichev, E.M., et al., Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia), Lithos, 2004, vol. 77, pp. 511–523.

    Article  Google Scholar 

  • MacGregor, I.D. The system MgO-Al2O3-SiO2: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions, Am. Mineral., 1974, vol. 59, pp. 110–119.

    Google Scholar 

  • Mahotkin, I.L., Gibson, S.A., Thompson, R.N., et al., Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk region, NW Russia, J. Petrol., 2000, vol. 41, no. 2, pp. 210–227.

    Article  Google Scholar 

  • Malkovets, V.G., Zedgenizov, D.A., Sobolev, N.V., et al., Contents of trace elements in olivines from diamonds and peridotite xenoliths of the V. Grib kimberlite pipe (Arkhangel’sk Diamondiferous Province, Russia), Dokl. Earth Sci., 2011, vol. 436, no. 2, pp. 219–223.

    Article  Google Scholar 

  • Mitchell, R.H., Composition of olivine, silica activity and oxygen fugacity in kimberlite, Lithos, 1973, vol. 6, pp. 65–81.

    Article  Google Scholar 

  • Mitchell, R.H., Mineralogy of the Elwin Bay kimberlite, Somerset Island, N.W.T., Canada, Am. Mineral., 1978, vol. 63, pp. 47–57.

    Google Scholar 

  • Mitchell, R.H., Kimberlites: Mineralogy, Geochemistry and Petrology, New York: Plenum Press, 1986.

    Book  Google Scholar 

  • Mitchell, R.H., Petrology of hypabyssal kimberlites: relevance to primary magma compositions, J. Volcanol. Geotherm. Res., 2008, vol. 174, pp. 1–8.

    Article  Google Scholar 

  • Moore, A.E., Olivine: a monitor of magma evolutionary paths in kimberlite and olivine melilitites, Contrib. Mineral. Petrol., 1988, vol. 99, pp. 238–248.

    Article  Google Scholar 

  • Moore, A.E., The case for a cognate, polybaric origin for kimberlitic olivines, Lithos, 2012, vol. 128–131, pp. 1–10.

    Article  Google Scholar 

  • Moore, A. and Belousova, E., Crystallization of Cr-poor and Cr-rich megacryst suites from the host kimberlite magma: implications for mantle structure and the generation of kimberlite magmas, Contrib. Mineral. Petrol., 2005, vol. 149, pp. 462–481.

    Article  Google Scholar 

  • Moore, A.E. and Lock, N.P., The origin of mantle-derived megacrysts and sheared peridotites—evidence from kimberlites in the northern Lesotho-Orange Free State (South Africa) and Botswana pipe clusters, S. Afr. J. Geol., 2001, vol. 104, pp. 23–38.

    Article  Google Scholar 

  • Moss, S., Russell, J.K., Scott-Smith, B.H., and Brett, R.C., Olivine crystal size distribution in kimberlite, Am. Mineral., 2010, vol. 95, pp. 527–536.

    Article  Google Scholar 

  • Nickel, K.G. and Green, D.H., Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds, Earth Planet. Sci. Lett., 1985, vol. 73, pp. 158–170.

    Article  Google Scholar 

  • Nielsen, T.F.D. and Sand, K.K., The Majuagaa kimberlite dike, Maniitsoq region, West Greenland: constraints on an Mg-rich silicocarbonatitic melt composition from groundmass mineralogy and bulk compositions, Can. Mineral., 2008, vol. 46, pp. 1043–1061.

    Article  Google Scholar 

  • Nimis, P. and Grutter, H., Internally consistent geothermometers for garnet peridotites and pyroxenites, Contrib. Mineral. Petrol., 2010, vol. 159, pp. 411–427. DOI: 10.1007/s00410-009-0455-9.

    Article  Google Scholar 

  • O’Reilly, S.Y., Griffin, W.L., and Ryan, C.G., Minor elements in olivine from spinel lherzolite xenoliths; implications for thermobarometry, Mineral. Mag., 1997, vol. 61, pp. 257–269.

    Article  Google Scholar 

  • Parsadanyan, K.S., The nature of petrochemical and geochemical heterogeneities in ultramafites and basalts of the Arkhangel’sk Province, Dokl. Earth Sci., 1996, vol. 351, no. 8, pp. 1304–1309.

    Google Scholar 

  • Parsadanyan, K.S., Kononova, V.A., and Bogatikov, O.A., Sources of heterogeneous magmatism of the Arkhangelsk diamondiferous province, Petrology, 1996, vol. 4, no. 5, pp. 460–479.

    Google Scholar 

  • Pervov, V.A., Bogomolov, E.S., Larchenko, V.A., et al., Rb-Sr age of kimberlites of the Pionerskaya Pipe, Arkhangel’sk diamondiferous province, Dokl. Earth Sci., 2005, vol. 400, no. 1, pp. 67–71.

    Google Scholar 

  • Pilbeam, L.H., Nielsen, T.F.D., and Waight, T.E., Digestion fractional crystallization (DFC): an important process in the genesis of kimberlites. Evidence from olivine in the Majuagaa Kimberlite, southern West Greenland, J. Petrol., 2013, vol. 54, no. 7, pp. 1399–1425.

    Article  Google Scholar 

  • Pivin, M., Féménias, O., and Demaiffe, D., Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo), Lithos, 2009, vol. 112S, pp. 951–960.

    Article  Google Scholar 

  • Reid, A.M., Donaldson, C.H., Dawson, J.B., et al., The Igwisi Hills extrusive ‘kimberlites’, Phys. Chem. Earth, 1977, vol. 59, pp. 199–218.

    Google Scholar 

  • Roeder, P.L. and Emslie, R.F., Olivine-liquid equilibrium, Contrib. Mineral. Petrol., 1970, vol. 29, pp. 275–289.

    Article  Google Scholar 

  • Russell, J.K., Porritt, L.A., Lavallee, Y., and Dingwell, D.B., Kimberlite ascent by assimilation-fuelled buoyancy, Nature, 2012, vol. 481, pp. 352–356.

    Article  Google Scholar 

  • Sablukov, S.M., Petrochemical series of kimberlite rocks, Dokl. Akad. Nauk SSSR, 1990, vol. 313, no. 4, pp. 935–939.

    Google Scholar 

  • Samsonov, A.V., Tretyachenko, V.V., Nosova, A.A., et al., Sutures in the Early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern East European Platform, in Proceedings of 10th International Kimberlite Conference, India: Bangalore, 2012, p. 10IKC35.

    Google Scholar 

  • Schmadicke, E., Gose, J., Witt-Eickschen, G., and Bratz, H., Olivine from spinel peridotite xenoliths: hydroxyl incorporation and mineral composition, Am. Mineral., 2013, vol. 98, no. 10, pp. 1870–1880.

    Article  Google Scholar 

  • Shchukina, E.V., Golovin, N.N., Malkovets, V.G., and Pokhilenko, N.P., Mineralogy and equilibrium P-T estimates for peridotite assemblages from the V. Grib kimberlite pipe (Arkhangelsk kimberlite province), Dokl. Earth Sci., 2012, vol. 444, no. 2, pp. 776–781.

    Article  Google Scholar 

  • Shen, T., Hermann, J., Zhang, L., et al., FTIR spectroscopy of Ti-chondrodite, Ti-clinohumite, and olivine in deeply subducted serpentinites and implications for the deep water cycle, Contrib. Mineral. Petrol., 2014, vol. 167, p. 992. DOI: 10.1007/s00410-014-0992-8.

    Article  Google Scholar 

  • Shevchenko, S.S., Lokhov, K.I., Sergeev, S.A., et al., Isotope studies in VSEGEI. Prospects of application of results for predicting and search of diamond deposits, in Perspektivy ispol’zovaniya rezul’tatov v tselyakh prognoza i poiskov mestorozhdenii almazov. Mater. nauchno-prakt. konf. “Effektivnost’ prognozirovaniya i poiskov mestorozhdenii almazov: proshloe, nastoyashchee i budushchee (Almazy-50)” (Proceedings of Scientific-Practical Conference on Efficiency of Prediction and Search for Diamond Deposits: Past, Present, and Future, St. Petersburg, 2004, pp. 383–387.

    Google Scholar 

  • Sinitsyn, A.V., Dauev, Yu.M., and Grib, V.P., Structural position and productivity of kimberlites of the Arkhangelsk Province, Geol. Geofiz., 1992, no. 10, pp. 74–83.

    Google Scholar 

  • Skinner, E.M.W., Contrasting group I and group II kimberlite petrology: towards a genetic model for kimberlites, in Proceedings of 4th International Kimberlite Conference, Ross, J. et al. Eds., Perth, 1989, pp. 528–544.

    Google Scholar 

  • Skinner, E.M. and Clement, C.R., Mineralogical classification of Southern African kimberlites, in Proceedings of 2th International Kimberlite Conference, Boyd, F.R. and Meyer, H.O.A., Washington, DC: AGU, 1979, pp. 129–139.

    Google Scholar 

  • Smith, B.H., Skinner, E.M., and Clement, C.R., Further data on the occurrence of pectolite in kimberlite, Mineral. Mag., 1983, vol. 47, pp. 75–80.

    Article  Google Scholar 

  • Sobolev, A.V., Hofmann, A.W., Kuzmin, D.V., et al., The amount of recycled crust in sources of mantle-derived melts, Science, 2007, vol. 316, no. 5823, pp. 412–417.

    Article  Google Scholar 

  • Sobolev, N.V., Logvinova, A.M., Zedgenizov, D.A., et al., Petrogenetic significance of minor elements in olivines from diamonds and peridotite xenoliths from kimberlites of Yakutia, Lithos, 2009, vol. 112S, pp. 701–713.

    Article  Google Scholar 

  • Sokol, A.G., Kupriyanov, I.N., Palyanov, Y.N., et al., Partitioning of H2O between olivine and carbonate-silicate melts at 6.3 GPa and 1400°C: implications for kimberlite formation, Earth Planet. Sci. Lett., 2013, vol. 383, pp. 58–67.

    Article  Google Scholar 

  • Solov’eva, L.V., Lavrent’ev, Yu.G., Egorov, K.N., et al., The genetic relationship of the deformed peridotites and garnet megacrysts from kimberlites with asthenospheric melts, Russ. Geol. Geophys., 2008, vol. 49, no. 4, pp. 207–224.

    Article  Google Scholar 

  • Taylor, W.R., An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolites and garnet websterite, Neues Jahrb. Mineral., Abh., 1998, no. 172, pp. 381–408. DOI: 10.1127/njma/172/1998/381.

    Google Scholar 

  • Tretyachenko, V.V., Lithofacies characteristics and paleogeographic conditions of the Early Carboniferous transitional reservoirs of the Zimnii Bereg diamond district, in Problemy prognozirovaniya i poiskov mestorozhdenii almazov na zakrytykh territoriyakh: materialy konferentsii, posvyashchennoi 40-letiyu YaNIGP TsNIGRI AK “ALROSA” (Problems of Prediction and Search for Diamond Deposits at the Closed Territories. Proceedings of Conference Dedicated to the 40th Anniversary of YaNIGP TsNIGRI AK “ALROSA”), Yakutsk: YaNTs SO RAN, 2008, pp. 125–131.

    Google Scholar 

  • Verichev, E.M., Garanin, V.K., Garanin, K.V., et al., Geology, composition, formation, and method of prospecting of V. Grib kimberlite pipe, in Problemy prognozirovaniya, poiskov i izucheniya mestorozhdenii poleznykh iskopaemykh na poroge XXI veka (Problems of Prediction, Search, and Study of Mineral Deposits at the Turn of 21th Century), Voronezh: Voronezh. Gos. Univ., 2003, pp. 43–48.

    Google Scholar 

  • Walker, A.M., Hermann, J., Berry, A.J., and O’Neill, H.St.C., Three water sites in upper mantle olivine and the role of titanium in the water weakening mechanism, J. Geophys. Res., 2007, vol. 112, p. B05211. DOI: 10.1029/2006JB004620.

    Google Scholar 

  • Zhang, H.F., Menzies, M.A., Mattey, D.P., et al., Petrology, mineralogy and geochemistry of oxide minerals in polymict xenoliths from the Bultfontein kimberlites, South Africa: implication for low bulk-rock oxygen isotopic ratios, Contrib. Mineral. Petrol., 2001, vol. 141, pp. 367–379.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Sazonova.

Additional information

Original Russian Text © L.V. Sazonova, A.A. Nosova, A.V. Kargin, S.E. Borisovskiy, V.V. Tretyachenko, Z.M. Abazova, Yu.G. Griban’, 2015, published in Petrologiya, 2015, Vol. 23, No. 3, pp. 251–284.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sazonova, L.V., Nosova, A.A., Kargin, A.V. et al. Olivine from the Pionerskaya and V. Grib kimberlite pipes, Arkhangelsk diamond province, Russia: Types, composition, and origin. Petrology 23, 227–258 (2015). https://doi.org/10.1134/S0869591115030054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591115030054

Keywords

Navigation