Skip to main content
Log in

Acid-base properties of cooling magmatic fluid and D.S. Korzhinskii’s “acidic wave” mechanism: Physicochemical simulation results

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Data on the component composition and acid-base properties of cooling fluid in the systems H2O-CO2, H2O-NaCl, and H2O-rock-forming minerals, which were derived by minimizing the Gibbs free energy, and the evaluated contributions of major fluid components to its acid-base properties suggest that the main reason for the inversion of acid-base properties of magmatic fluids in the fluid-granite system is the opposite tendencies in the changes of the dissociation constants of acidic and basic fluid components in the course of fluid cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avchenko, O.V., Chudnenko, K.V., and Aleksandrov, I.A., Osnovy fiziko-khimicheskogo modelirovaniya mineral’nykh sistem (Principles of Physicochemical Modeling of Mineral Systems), Moscow: Nauka, 2009.

    Google Scholar 

  • Avchenko, O.V., Chudnenko, K.V., Aleksandrov, I.A., and Khudolozhkin, V.O., Adaptation of the SELECTOR-C program package for solving petrogenetic problems of metamorphic rocks, “Geochem. Int.,” 2011, vol. 49, no. 2, 139–153.

    Article  Google Scholar 

  • Borisov, M.V., Geokhimicheskie i termodinamicheskie modeli zhil’nogo gidrotermal’nogo rudoobrazovaniya (Geochemical and Thermodynamic Models of Vein Hydrothermal Ore Formation), Moscow: Nauchnyi mir, 2000.

    Google Scholar 

  • Borisov, M.V. and Shvarov, Yu.V., Effect of wall rocks on the efficiency of hydrothermal ore-forming processes, Geochem. Int. 2010, vol. 48, no. 9, pp. 940–945.

    Article  Google Scholar 

  • Chudnenko, K.V., Termodinamicheskoe modelirovanie v geokhimii (Thermodynamic Simulations in Geochemistry), Novosibirsk: GEO, 2010.

    Google Scholar 

  • Chudnenko, K.V. and Karpov, I.K., Selektor-Windows, programmnoe sredstvo rascheta khimicheskikh ravnovesii minimizatsiei termodinamicheskikh potentsialov. Kratkaya instruktsiya (Selector-Windows, a Program Tool for Calculation of Chemical Equilibria by Minimization of Thermodynamic Potentials: A Concise Manual), Irkutsk, 2003.

    Google Scholar 

  • Duan, Z.H. and Sun, R., An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chem. Geol., 2003, vol. 193, pp. 253–271.

    Article  Google Scholar 

  • Frantz, J.D., Popp, R.K., and Hoering, T.C., The compositional limits of fluid immiscibility in the system H2O-NaCl-CO2 as determined with the use of synthetic fluid inclusions in conjunction with mass spectrometry, Chem. Geol., 1992, vol. 98, nos. 3–4, pp. 237–255.

    Article  Google Scholar 

  • Grichuk, M.V., Termodinamicheskie modeli submarinnykh gidrotermal’nykh sistem (Thermodynamic Models of Submarine Hydrothermal Systems), Moscow: Nauchnyi mir, 2000.

    Google Scholar 

  • Helgeson, H., Complexing and Hydrothermal Ore Deposition, New York: Moscow, 1964.

    Google Scholar 

  • Helgeson, H., Mass transfer among minerals and hydrothermal solutions, in Geochemistry of Hydrothermal Ore Deposits, New York: Wiley, pp. 567–610, 1979.

    Google Scholar 

  • Helgeson, H., Thermodynamics of hydrothermal systems at elevated temperatures and pressures, Am. J. Sci., 1969, vol. 267, pp. 729–804.

    Article  Google Scholar 

  • Ivanov, I.P. and Borisov, M.V., Assessment of composition of primary melt during metasomatic replacement of the rocks, Geokhimiya, 1980, no. 12, pp. 1797–1806.

    Google Scholar 

  • Johnson, J.W., Oelkers, E.H., et al. Supcrt-92: software package for calculating the standard molal thermodynamic properties of mineral, gases, aqueous species, and reactions from 1 to 5000 bars and 0 to 1000°C, Comp. Geosci., 1992, vol. 18, pp. 899–947.

    Article  Google Scholar 

  • Karpov, I.K., Fiziko-khimicheskoe modelirovanie na EVM v geokhimii (Physicochemical Numerical Simulations in Geochemistry), Novosibirsk: Nauka, 1981.

    Google Scholar 

  • Karpov, I.K., Chudnenko, K.V., and Kulik, D.A., Modeling chemical mass-transfer in geochemical processes: thermodynamic relations, conditions of equilibria and numerical algorithms, Am. J. Sci., 1997, vol. 297, pp. 767–806.

    Article  Google Scholar 

  • Karpov, I.K., Chudnenko, K.V., Kravtsova, R.G., and Bychinskii, V.A., Simulation of physicochemical processes of dissolution, transport, and deposition of gold in epithermal Au-Ag deposits in northeastern Russia, Russ. Geol. Geophys., 2001, vol. 42, no. 3, pp. 393–408.

    Google Scholar 

  • Kazahaya, K. and Shinohara, H., Generation of HCl by high temperature hydrolysis of NaCl, Geol. Surv. Jpn., Cruise Rept., 1991, vol. 277, pp. 101–103.

    Google Scholar 

  • Khudolozhkin, V.O. and Sharova, O.I., Oxygen regime of granulite metamorphism: modeling by the method of Gibbs free energy minimization, Petrology, 2011, vol. 19, no. 1, pp. 102–107.

    Article  Google Scholar 

  • Kigai, I.N., On controversial resolutions of some problems of metasomatism and ore formation, in Tez. dokl. “Fizikokhimicheskie faktory petroi rudogeneza: novye rubezhi”. Materialy konferentsii, posvyashchennoi 110–letiyu so dnya rozhdeniya akademika D.S. Korzhinskogo (Abstracts “Physicochemical Factors of Rock- and Ore-Forming Processes: New Frontiers,” Proceedings of Conference Dedicated to the 110th Anniversary of D.S. Korzhinskii), Moscow: IGEM RAN, 2009, pp. 167–170.

    Google Scholar 

  • Kigai, I.N. and Tagirov, B.R., Evolution of acidity of hydrothermal fluids related to hydrolysis of chlorides, Petrology, 2010, vol. 18, no. 3, pp. 252–261.

    Article  Google Scholar 

  • Korzhinskii, D.S., Essay on metasomatic processes, in Osnovnye problemy v uchenii o magmatogennykh rudnykh mestorozhdeniyakh (Main Problems in the Theory of Magmatogenic Ore Deposits), Moscow: Izd. AN SSSR, 1955, pp. 376–377.

    Google Scholar 

  • Korzhinskii, D.S., Metamagmatic Processes, Izv. Akad. Nauk SSSR, Ser. Geol., 1973, no. 12, pp. 3–7.

    Google Scholar 

  • Korzhinskii, D.S., On problem of the derivation of equations of infiltration and diffusion metasomatic zoning, Dokl. Akad. Nauk SSSR, 1953, vol. 88, no. 3, pp. 1102–1114.

    Google Scholar 

  • Korzhinskii, D.S., Izbrannye trudy. Kislotno-osnovnoe vzaimodeistvie v mineraloobrazuyushchikh sistemakh (Selected Works. Acid-Base Interaction in the Mineral-Forming Systems), Moscow: Nauka, 1994.

    Google Scholar 

  • Li, J.X., Li, G.M., Qin, K.Z., and Xiao, B., High temperature magmatic fluid exsolved from magma at the Duobuza porphyry copper-gold deposit, northern Tibet, Geofluids, 2011, vol. 11, pp. 134–143.

    Article  Google Scholar 

  • Naumov, G.B. and Dorofeeva, V.A., Chemical evolution of acidity of endogenic solutions, Geokhimiya, 1975, no. 2, pp. 248–258.

    Google Scholar 

  • Naumov, G.B. and Naumov, V.B., Effect of temperature and pressure on the acidity of endogenic solutions and staged formation, Geol. Rudn. Mestorozhd., 1977, no. 1, pp. 13–23.

    Google Scholar 

  • Naumov, V.B. and Tugarinov, A.I., PT conditions of formation of hydrothermal uranium deposits, Geokhimiya, 1969, no. 2, pp. 131–146.

    Google Scholar 

  • Omel’yanenko, B.I., Physicochemical conditions of beresitization-type wall-rock alteration, in Metasomatizm i drugie voprosy fiziko-khimicheskoi petrologii (Metasomatism and Other Problems of Physicochemical Petrology), Moscow: Nauka, 1968, pp. 364–381.

    Google Scholar 

  • Omel’yanenko, B.I., Okolorudnye gidrotermal’nye izmeneniya porod (Wall-Rock Hydrothermal Alterations Associated with Ore Mineralization), Moscow: Nedra, 1978.

    Google Scholar 

  • Pauling, L. and Pauling, P., Chemistry, San Francisco: W.H. Freeman, 1975.

    Google Scholar 

  • Popp, R.K. and Frantz, J.D., Fluid immiscibility in the system H2O-NaCl-CO2 as determined from synthetic fluid inclusions, Annu. Rept. Dir. Geophys. Lab, 1989, p. 135.

    Google Scholar 

  • Rafal’skii, R.P., On the problem of acidity of hydrothermal solutions, Geokhimiya, 1987, no. 3, pp. 402–415.

    Google Scholar 

  • Roedder, E., Composition of Fluid Inclusions. Data of Geochemistry, 6th Ed., Washington: U.S. Geol. Surv., 1972.

    Google Scholar 

  • Ryzhenko, B.N., Barsukov, Vikt.L., and Knyazeva, S.N., Chemical characteristics (composition, pH, and Eh) of a rock-water system: 1. The granitoids-water system, Geochem. Int., 1996, no. 5, pp. 390–407.

    Google Scholar 

  • Shinohara, H., Does acid volcanic gas represent magmatic discharge at depth?, Rept. Geol. Surv. Japan, 1989, no. 279, pp. 152–155.

    Google Scholar 

  • Shmulovich, K.I., Dvuokis’ ugleroda v vysokotemperaturnykh protsessakh mineraloobrazovaniya (Carbon Dioxide in High-Temperature Mineral-Forming Processes), Moscow: Nauka, 1988.

    Google Scholar 

  • Takenouchi, S. and Kennedy, G., The binary system H2O-CO2 at high temperatures and pressures, Am. J. Sci., vol. 262, no. 9, pp. 1055–1074.

  • Vinogradov, A.P., Average content of chemical elements in the major types of igneous rocks of the Earth’s crust, Geokhimiya, 1962, no. 7, p. 555–571.

    Google Scholar 

  • Volokhov, I.M., Magmatic formations and intratelluric fluids, in Flyuidy v magmaticheskikh protsessakh (Fluids in Magmatic Processes), Moscow: Nauka, 1982, pp. 63–75.

    Google Scholar 

  • Yarmolyuk, V.V., Volatiles in volcanic process, in Flyuidy v magmaticheskikh protsessakh (Fluids in Magmatic Processes), Moscow: Nauka, 1982.

    Google Scholar 

  • Zaraiskii, G.P., Shapovalov, Yu.B., and Belyavskaya, O.N., Eksperimental’noe issledovanie kislotnogo metasomatoza (Experimental Studies of Acid Metasomatism), Moscow: Nauka, M, 1981.

    Google Scholar 

  • Zharikov, V.A., Experimental study of the acid-base effect, in Tez. Dokl. konferentsii “Problemy postmagmaticheskogo rudoobrazovaniya” (Proceedings of Conference on Problems of Postmagmatic Ore Formation) Praga: 1963, vol. 1, pp. 466–471.

    Google Scholar 

  • Zharikov, V.A., Alekhin, Yu.V., and Lakshtanov, L.Z., Main mechanisms of directed compositional evolution of pore solutions: current state of the filtration effect problem, in Tez. dokl. “Fiziko-khimicheskie problemy endogennykh geologicheskikh protsessov”. Materialy konferentsii, posvyashchennoi 100-letiyu akademika D.S. Korzhinskogo (Proceedings of Conference on Physicochemical Problems of Endogenic Geological Processes Dedicated to the 100th Birth of Academician D.S. Korzhinskii), Moscow, 1999, pp. 7–8.

    Google Scholar 

  • Zharikov, V.A., Dyuzhikova, T.N., and Maksakova, E.M., On the different filtration rates of anions and cations during percolation through finely dispersed filters, Dokl. Akad. Nauk SSSR, 1961, vol. 141, no. 1, pp. 135–138.

    Google Scholar 

  • Zotov, I.A. and Pertsev, N.N., Evidence of the operation of transmagmatic fluids in intrusions, in Flyuidy v magmaticheskikh protsessakh (Fluids in Magmatic Processes), Moscow: Nauka, 1982, pp. 7–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. O. Khudolozhkin.

Additional information

Original Russian Text © V.O. Khudolozhkin, A.S. Kuchma, 2015, published in Petrologiya, 2015, Vol. 23, No. 4, pp. 440–448.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khudolozhkin, V.O., Kuchma, A.S. Acid-base properties of cooling magmatic fluid and D.S. Korzhinskii’s “acidic wave” mechanism: Physicochemical simulation results. Petrology 23, 404–411 (2015). https://doi.org/10.1134/S0869591115030029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591115030029

Keywords

Navigation