Skip to main content
Log in

Fluid composition in the anhydrous C-O-S system under lower crustal P-T conditions according to thermodynamic modeling

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Thermodynamic modeling was used to show that the composition of fluids in the anhydrous subsystem of the C-O-S-H system is dominated by COS, CO, and CS2 under reducing conditions (\(f_{O_2 } \) < NNO). At an increase in oxygen fugacity up to NNO to NNO + 1 at T = 900–1100°C and lower crustal pressures, the composition of model fluid reaches the maximum content of elemental sulfur. In the presence of water (more than a few mole percent), the compounds of sulfur and carbon are decomposed to form hydrogen sulfide, this is why their content in volcanic gases is negligible. Fluid dominated by carbon dioxide is characteristic of some basic magmas of subduction zones and flood basalt provinces related to superplumes. It is suggested that, under such geodynamic conditions, the COS, CO, and CS2 components of the fluid dissolve, concentrate, and transport nickel and, possibly, platinum group metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behn, M.D., Kelemen, P.B., Hirth, G., et al., Diapirs as the source of the sediment signature in arc lavas, Nat. Geosci., 2011, vol. 4, pp. 641–646.

    Article  Google Scholar 

  • Bergman, S.C. and Dubessy, J., CO2-CO fluid inclusions in a composite peridotite xenolith: implications for upper mantle oxygen fugacity, Contrib. Mineral. Petrol., 1984, vol. 85, pp. 1–13.

    Article  Google Scholar 

  • Berkesi, M., Guzmics, T., et al., The role of CO2-rich fluids in trace element transport and metasomatism in the lithospheric mantle beneath the central Pannonian Basin, Hungary, based on fluid inclusions in mantle xenoliths, Earth Planet. Sci. Lett., 2012, vol. 331–332, pp. 8–20.

    Article  Google Scholar 

  • Blomberg, M.R.A., Siegbahn, P.E.M., Lee, T.J., et al., Binding energies and bond distances of Ni(CO)x, x = 1–4: an application of coupled-cluster theory, J. Chem. Phys., 1991, vol. 95, pp. 5898–5905, doi: 10.1063/1.461611.

    Article  Google Scholar 

  • Borisova, A.Yu., Nikogosian, I.K., Scoates, J.S., et al., Melt, fluid and crystal inclusions in olivine phenocrysts from Kerguelen plume-derived picritic basalts: evidence for interaction with the Kerguelen plateau lithosphere, Chem. Geol., 2002, vol. 183, pp. 195–220.

    Article  Google Scholar 

  • Burgisser, A. and Scaillet, B., Redox evolution of a degassing magma rising to the surface, Nature, 2007, vol. 445, pp. 194–197.

    Article  Google Scholar 

  • Cheng, P., Koyanagi, G.K., and Bohme, D.K., Carbon disulfide reactions with atomic transition-metal and maingroup cations: gas-phase room-temperature kinetics and periodicities in reactivity, J. Phys. Chem. A, 2006, vol. 110, no. 8, pp. 2718–2728.

    Article  Google Scholar 

  • Deines, P., Nafziger, R.H., Ulmer, G.C., and Woermann, E., Temperature-oxygen fugacity tables for selected gas mixtures in the system C-H-O at one atmosphere total pressure, Bull. Earth Miner. Sci. Exp. Stn., Pa. State Univ., 1974, vol. 88, p. 129.

    Google Scholar 

  • Fegley, B., Jr., Thermodynamic models of the chemistry of lunar volcanic gases, Geophys. Res. Lett., 1991, vol. 18, no. 11, pp. 2073–2076.

    Article  Google Scholar 

  • Frost, D.J. and McCammon, C.A., The redox state of Earth’s mantle, Annu. Rev. Earth Planet. Sci., 2008, vol. 36, pp. 389–420.

    Article  Google Scholar 

  • Giuliani, G., Dubessy, J., Banks, D., et al., CO2-H2SCOS-S8-AlO(OH)-bearing fluid inclusions in ruby from marble-hosted deposits in Luc Yen area, North Vietnam, Chem. Geol., 2003, vol. 194, pp. 167–185.

    Article  Google Scholar 

  • Ionov, D.A., Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Kamchatka, J. Petrol., 2010, vol. 51, pp. 327–361.

    Article  Google Scholar 

  • Ishimaru, S. and Arai, S., Arsenide in a metasomatized peridotite xenolith as a constraint on arsenic behavior in the mantle wedge, Am. Mineral., 2008a, vol. 93, pp. 1061–1065.

    Article  Google Scholar 

  • Ishimaru, S. and Arai, S., Nickel enrichment in mantle olivine beneath a volcanic front, Contrib. Mineral. Petrol., 2008b, vol. 156, pp. 119–131.

    Article  Google Scholar 

  • Ishimaru, S., Arai, S., Ishida, Y., et al., Melting and multistage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, Southern Kamchatka, J. Petrol., 2007, vol. 48, pp. 395–433.

    Article  Google Scholar 

  • Jugo, P.J., Sulfur content at sulfide saturation in oxidized magmas, Geology, 2009, vol. 37, no. 5, pp. 415–418.

    Article  Google Scholar 

  • Konnikov, E.G. and Vasyukova, O.N., Composition of fluid inclusions from intrusive rocks of the norite-cortlandite complex, Kamchatka, Geol. Ore Dep., 2007, vol. 49, no. 3, pp. 227–237.

    Article  Google Scholar 

  • Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, New Series, Group IV: Physical Chemistry. V. 19. Thermodynamic Properties of Inorganic Materials Compiled by SGTE, Springer, 2010.

    Google Scholar 

  • NIST Chemistry WebBook. NIST Standard Reference Database Number 69. http://webbook.nist.gov/chemistry/ http://webbook.nist.gov/cgi/inchi/InChI%3D1S/CS2/c2-1-3.

  • Operti, L. and Rabezzana, R., Gas-phase ion chemistry in organometallic systems, Mass Spectrom. Rev., 2006, vol. 25, pp. 483–513, doi: 10.1002/ mas.20075.

    Article  Google Scholar 

  • Pasteris, J.D. and Wanamaker, B.J., Laser Raman microprobe analysis of experimentally re-equilibrated fluid inclusions in olivine: some implications for mantle fluids, Am. Mineral., 1988, vol. 73, pp. 1074–1088.

    Google Scholar 

  • Putirka, K., Thermometers and barometers for volcanic systems, in Minerals, Inclusions and Volcanic Processes, K. Putirka and F. Tepley, Eds., Rev. Mineral. Geochem., 2008, vol. 69, pp. 61–120.

    Google Scholar 

  • Robie, R.A., Hemingway, B.S., and Fisher, J.R., Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures, Washington: U.S. Govt. Print. Off., 1978.

    Google Scholar 

  • Shi, P. and Saxena, S.K., Thermodynamic modeling of the C-H-O-S fluid system, Am. Mineral., 1992, vol. 77, nos. 9–10, pp. 1038–1049.

    Google Scholar 

  • Simakin, A.G., Salova, T.P., and Bondarenko, G.V., Experimental study of magmatic melt oxidation by CO2, Petrology, 2012a, vol. 20, no. 7, pp. 593–606.

    Article  Google Scholar 

  • Simakin, A., Zakrevskaya, O., and Salova, T., Novel amphibole geo-barometer with application to mafic xenoliths, Earth Sci. Res., 2012b, vol. 1, no. 2, pp. 82–97.

    Article  Google Scholar 

  • Sobolev, A.V., Sobolev, S.V., Kuzmin, D.V., et al., Siberian meimechites: origin and relation to flood basalts and kimberlites, Russ. Geol. Geophys., 2009, vol. 50, pp. 999–1033.

    Article  Google Scholar 

  • Soloviev, A.V., Palechek, T.N., and Ledneva, G.V., Campanian-Maastrichtian Deposits in the Frontal Part of the Olyutor Zone (Southern Koryak Upland), Stratigr. Geol. Correlation, 2000, vol. 8, no. 2, pp. 187–194.

    Google Scholar 

  • Symonds, R.B., Rose, W.I., Bluth, G.J.S., and Gerlach, T.M., Volcanic gas studies—methods, results and applications, in Volatiles in Magmas, Carroll M.R. and Holloway J.R., Eds., Mineral. Soc. Am. Rev. Mineral., 1994, vol. 30, pp. 1–66.

    Google Scholar 

  • Teague, A.J., Hanley, J., Seward, T.M., and Reutten, F., Trace-element distribution between coexisting aqueous fumarole condensates and natrocarbonatite lavas at Oldoinyo Lengai volcano, Tanzania, in Volcanism and Evolution of the African Lithosphere, L. Beccaluva, G. Bianchini, and Wilson, B.M., Eds., Spec. Pap. Geol. Soc. Am., 2011, vol. 478, pp. 159–172.

    Chapter  Google Scholar 

  • Zolotov, M.Yu., On the chemistry of mantle and magmatic volatiles on Mercury, Icarus, 2011, vol. 212, pp. 24–41.

    Article  Google Scholar 

  • Zubkov, V.S., Composition and speciation of fluid in the system C-H-N-O-S at P-T conditions of the upper mantle, Geochem. Int., 2001, vol. 39, no. 2, pp. 109–122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Simakin.

Additional information

Original Russian Text © A.G. Simakin, 2014, published in Petrologiya, 2014, Vol. 22, No. 1, pp. 50–59.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simakin, A.G. Fluid composition in the anhydrous C-O-S system under lower crustal P-T conditions according to thermodynamic modeling. Petrology 22, 45–53 (2014). https://doi.org/10.1134/S0869591114010068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591114010068

Keywords

Navigation